MINIMUM INHIBITORY CONCENTRATION OF SOME 6,7,8,9-TETRAHYDRO-5H-[1,2,4]TRIAZOLO[4,3-A]AZEPINE DERIVATIVES AGAINST AMMONIFYING BACTERIA ISOLATED FROM THE SOIL FERROSPHERE
DOI:
https://doi.org/10.58407/bht.1.23.2Keywords:
ammonifying bacteria, dilution method, microbiologically influenced corrosion, minimum inhibitory concentration, 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine derivativesAbstract
Soil ammonifying bacteria play an important role both in creating conditions for the course of the microbial corrosion process and in the metal corrosion process itself. Compounds of 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine, with quaternary nitrogen exhibit high antibacterial properties by the agar diffusion method. The method of serial dilution of compounds in a liquid nutrient medium allows to estimate the minimum antibacterial concentration of compounds.
The aim of the study was to study the sensitivity of ammonifying bacteria isolated from the soil ferrosphere to some derivatives of 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine using the dilution method.
The study was carried out by the method of serial dilutions generally accepted in microbiology using a 4-day associative culture of ammonifying bacteria previously isolated from the microbial community of the ferrosphere of a corroding steel pipe. The predominant representatives of the association were Bacillus simplex ChNPU F1, Fictibacillus sp. ChNPU ZVB1, Streptomyces gardneri ChNPU F3, Streptomyces canus NUChC F2. The culture medium was meat-peptone broth; the cultivation temperature was 29 ± 2 ºС. The studied compounds − bromide 3-anilinomethyl-1-[2-(4-chlorophenyl)-2-oxoethyl]-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,5-a]azepinium, bromide 1-[2-(4-chlorophenyl)-2-oxoethyl]-3-(4-tolylaminomethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepinium, bromide 1-(2-oxo-2-phenylethyl)-3-(4-toluidinomethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,5- a]azepinium.
Scientific novelty - the sensitivity of ammonifying bacteria isolated from the soil ferrosphere to some derivatives of 6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepine was investigated using the dilution method, which clarifies the antibacterial properties of the compounds, namely their minimum inhibitory concentration.
Conclusions - the culture of ammonifying bacteria is sensitive to the studied quaternary triazoloazepine salts, which in concentrations of 10.3-123.5 μg/mL showed bacteriostatic properties. The highest sensitivity was noted for compound II (bromide 1-[2-(4-chlorophenyl)-2-oxoethyl]-3-(4-tolylaminomethyl)-6,7,8,9-tetrahydro-5H-[1,2,4]triazolo[4,3-a]azepinium, the minimum inhibitory concentration of which is 10.3 μg/mL. A further perspective is the determination of the minimum bactericidal concentration of quaternary triazoloazepine salts, in particular, in relation to other ecological and physiological groups of bacteria - agents of microbiologically influenced corrosion.
Downloads
References
Andreyuk, K., Kozlova, I., Koptieva, Zh., Pilyashenko-Novokhatny, A., Zanina, V., & Purish, L. (2005). Microbial Corrosion of Underground Structures Naukova Dumka, Kyiv. (in Ukrainian)
Мікробна корозія підземних споруд / К.І. Андреюк, І.П. Козлова, Ж.П. Коптєва та ін. Київ: Наук. думка, 2005. 258 с.
Balouiri, M., Sadiki, M., & Ibnsouda, S.K. (2016). Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 6(2), 71–79. https://doi.org/10.1016/j.jpha.2015.11.005
Buffet-Bataillon, S., Tattevin, P., Bonnaure-Mallet, M., & Jolivet-Gougeon, A. (2001). Emergence of resistance to antibacterial agents: the role of quaternary ammonium compounds: a critical review. Int. J. Antimicrobial Agents, 39, 381–389. https://doi.org/10.1016/j.ijantimicag.2012.01.011
Costerton, J. W., Lewandowski, Z., Caldwell, D. E., Korber, D. R., & Lappin-Scott, H. M. (1995). Microbial biofilms. Annual review of microbiology, 49, 711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431
Gu, T. (2014). Theoretical modeling of the possibility of acid producing bacteria causing fast pitting biocorrosion. Journal of Microbial & Biochemical Technology, 6, 068–074. https://doi.org/10.4172/1948-5948.1000124
James, G.A., Beaudette, L., & Costerton, J.W. (1995). Interspecies bacterial interactions in biofilm. J. Ind. Microbiol., 15(4), 237–262. https://doi.org/10.1007/BF01569978
Li, M., Liu, X., Liu, N., Guo, Z., Singh, P.K., & Fu, S. (2018). Effect of surface wettability on the antibacterial activity of nanocellulose-based material with quaternary ammonium groups. Colloids Surf. A Physicochem. Eng. Asp., 554, 122–128. https://doi.org/10.1016/j.colsurfa.2018.06.031
Liu, J., Dong, C., Wei, D., Zhang, Z., Xie, W., Li, Q., & Lu, Z. (2019). Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt. Fibers and Polymers, 20, 1368–1374. https://doi.org/10.1007/s12221-019-1091-2
McCready, M. H. 1918. Tables for rapid interpretation of fermentation tube results. Can. J. Public Health, 9, 201.
Mykhalchenko, N.M., Demchenko, N.R., & Smykun, N.V. (2007). Biocidal action of quaternary triazoloazepine salts against sulfate-reducing bacteria. Environmental protection and rational use of natural resources: Collection of reports of the VI International scientific conference of graduate students and students. Donetsk: DonNTU, DonNU. Vol. 2. P.148–149. (in Ukrainian)
Михальченко Н.М., Демченко Н.Р., Смикун Н.В. Біоцидна дія четвертинних триазолоазепінієвих солей щодо сульфатвідновлювальних бактерій. Охорона навколишнього середовища та раціональне використання природних ресурсів: Збірка доповідей VI Міжнародної наукової конференції аспірантів і студентів. Донецьк: ДонНТУ, ДонНУ, 2007. Т.2. С.148–149.
Musienko, N., Smykun, N., & Demchenko, N. (2008). Sensitivity of ammonifying bacteria to quaternary triazoloazepine salts. Youth and the progress of biology: collection of theses of the Fourth International Scientific Conference of students and postgraduates, April 7-10, 2008, Lviv. P.329–330. (in Ukrainian)
Мусієнко Н., Смикун Н., Демченко Н. Чутливість амоніфікувальних бактерій до четвертинних триазолоазепінієвих солей. Молодь і поступ біології: збірник тез Четвертої міжнародної наукової конференції студентів та аспірантів, 7-10 квітня 2008 року, м. Львів. Львів, 2008. С.329–330.
Nadagouda, M.N., Vijayasarathy, P., Sin, A., Nam, H., Khan, S., Parambath, J.B.M., Mohamed, A.A., & Han, Ch. (2022). Antimicrobial activity of quaternary ammonium salts: structure-activity relationship. Med. Chem. Res., 31, 1663–1678. https://doi.org/10.1007/s00044-022-02924-9
Pilyashenko-Novokhatny, A.I. It is possible to distribute functions between components of corrosion-dangerous communities of microorganisms in the general process of microbially induced corrosion. Problems of corrosion and anti-corrosion protection of materials: materials IV International. conference-exhibition (Corrosion-2000). Lviv: Physics and Mechanics. Institute named after H.V. Karpenko, National Academy of Sciences of Ukraine. 2000. P. 564–567. (in Ukrainian)
Піляшенко-Новохатний А.І. Можливий розподіл функцій між складовими корозійнонебезпечними сукупностями мікроорганізмів в загальному процесі мікробно індукованої корозіїї. Проблеми корозії та протикорозійного захисту матеріалів: матеріали ІV Міжнар. конф.-виставки (Корозія-2000). Львів: Фізико-механ. ін-т ім. Г.В.Карпенка НАН України. 2000. С. 564–567.
Purish, L.M., & Asaulenko, L.G. (2007). Dynamics of successional changes in the sulfidogenic microbial association under the conditions of biofilm formation on the steel surface. Mikrobiol. Z., 69(6), 19–25. (in Ukrainian)
Пуріш Л.М., Асауленко Л.Г. Динаміка сукцесійних змін у сульфідогенній мікробній асоціації за умов формування біоплівки на поверхні сталі. Мікробіол. журн. 2007. Т.69, № 6. С. 19–25.
Telegdi, J., Shaban, A., & Trif, L. (2017). Microbiologically influenced corrosion (MIC). Trends in Oil and Gas Corrosion Research and Technologies. P. 193–217. Elsevier Ltd. http://dx.doi.org/10.1016/B978-0-08-101105-8.00008-5
Tischer, M., Pradel, G., Ohlsen, K., & Holzgrabe, U. (2012). Quaternary ammonium salts and their antimicrobial potential: Targets or nonspecific interactions? ChemMedChem., 7, 22–31. https://doi.org/10.1002/cmdc.201100404
Tkachuk, N.V., & Demchenko, N.R. (2010). Antibacterial action of quaternary salts of triazoloazepine against ammonifying bacteria of the corrosion-dangerous group. Microbiology and biotechnology, 2, 75–80. (in Ukrainian). https://doi.org/10.18524/2307-4663.2010.2(10).98874
Ткачук Н.В., Демченко Н.Р. Антибактеріальна дія четвертинних солей триазолоазепінію щодо амоніфікувальних бактерій корозійно-небезпечного угруповання. Мікробіологія і біотехнологія. 2010. №2. С.75–80. https://doi.org/10.18524/2307-4663.2010.2(10).98874
Tkachuk, N., & Zelena, L. (2021a). Some corrosive bacteria isolated from the technogenic soil ecosystem in Chernihiv city (Ukraine). Studia Quaternaria, 38(2), 101–108. https://doi.org/10.24425/sq.2021.136826
Tkachuk, N. & Zelena, L. (2021b). The impact of bacteria of the genus Bacillus upon the biodamage/biodegradation of some metals and extensively used petroleum-based plastics. Corros. Mater. Degrad., 2, 531–553. https://doi.org/10.3390/cmd2040028
Tkachuk, N., Zelena, L., & Olhovik, Ye. (2022). Isolation of actinobacteries from the soil ferrosphere and their identification. BHT: Biota. Human. Technology, 1(1), 33–44. (in Ukrainian)
Ткачук Н., Зелена Л., Ольховик Є. Виділення актинобактерій з ґрунту феросфери та їх ідентифікація. BHT: Biota. Human. Technology. 1(1). C. 33–44.
Zhao, T., & Sun, G. (2008). Hydrophobicity and antimicrobial activities of quaternary pyridinium salts. J. Appl. Microbiol., 104, 824–830. https://doi.org/10.1111/j.1365-2672.2007.03616.x
Zhang, P., Xu, D., Li, Y., Yang, K., & Gu, T. (2015). Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm. Bioelectrochemistry (Amsterdam, Netherlands), 101, 14–21. https://doi.org/10.1016/j.bioelechem.2014.06.010
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Biota. Human. Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.