QUANTUM CHEMICAL AND PHARMACOLOGICAL CHARACTERISTICS OF 6-ARYLAMINO-7H-[1,2,4]TRIAZOLO[3,4-B][1,3,4]THIADIAZINES DERIVATIVES
DOI:
https://doi.org/10.58407/bht.2.25.8Keywords:
6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine, quantum chemical descriptors, pharmacological activity, correlation analysis, prediction of metabolitesAbstract
Purpose of the work. To determine the relationship between biological activity and quantum chemical descriptors for 6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives and to predict their metabolic pathways.
Methodology. For the primary screening, a library of compounds containing 42 derivatives of 6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine was created.
The study was conducted using ChemOffice software package, Molinspiration Cheminformatics, OSIRIS Property Explorer, SwissTargetPrediction, SuperPred, and ProTox online resources. The energy characteristics, pharmacokinetic parameters, and toxicity were calculated, compliance with the Lipinski rule was assessed, and the probable ligand proteins were predicted. Microsoft Excel was used to perform linear correlation and regression analyses in the coordinates of binding probability – quantum chemical descriptors.
Scientific novelty. Virtual screening of pharmacological activity and probable metabolic products for new 6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives was performed and correlations between the probability of binding to Histone deacetylase 4 and Cyclin-dependent kinase 2/cyclin A proteins and energy parameters of the molecules were revealed.
Conclusions. Prediction of possible biological activity for a number of 6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives was performed. A number of correlation dependencies were established for the probable ligands with the highest binding probability and energies of the highest occupied and lowest vacant molecular orbitals. The metabolic pathways with the formation of hydroxylated, demethylated, and O- and N-acylated forms of the starting compounds were predicted. The obtained results are useful for a more reasonable virtual screening of biological activity of new 6-arylamino-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazine derivatives for the targeted synthesis of future medicinal substances.
Downloads
References
Aihara, J. (1999) Reduced HOMO-LUMO Gap as an Index of Kinetic Stability for Polycyclic Aromatic Hydrocarbons. The Journal of Physical Chemistry A, 103, 7487-7495.
Aggarwal, R., & Sumran, G. (2020). An insight on medicinal attributes of 1,2,4-triazoles. European journal of medicinal chemistry, 205, 112652. https://doi.org/10.1016/j.ejmech. 2020.112652
Alafeefy, A. M., Abdel-Aziz, H. A., Vullo, D., Al-Tamimi, A. M., Awaad, A. S., Mohamed, M. A., Capasso, C., & Supuran, C. T. (2015). Inhibition of human carbonic anhydrase isozymes I, II, IX and XII with a new series of sulfonamides incorporating aroylhydrazone-, [1,2,4]triazolo[3,4-b][1,3,4]thiadiazinyl- or
-(cyanophenylmethylene)-1,3,4-thiadiazol-3(2H)-yl moieties. Journal of enzyme inhibition and medicinal chemistry, 30(1), 52–56. https://doi.org/10.3109/ 14756366.2013.877897
Ansari, M., Shokrzadeh, M., Karima, S., Rajaei, S., Hashemi, S. M., Mirzaei, H., ... & Emami, S. (2019). Design, synthesis and biological evaluation of flexible and rigid analogs of 4H-1, 2, 4-triazoles bearing 3, 4, 5-trimethoxyphenyl moiety as new antiproliferative agents. Bioorganic chemistry, 93, 103300. https://doi.org/10.1016/j.bioorg.2019.103300
Aytaç, P. S., Durmaz, I., Houston, D. R., Çetin-Atalay, R., & Tozkoparan, B. (2016). Novel triazolothia-diazines act as potent anticancer agents in liver cancer cells through Akt and ASK-1 proteins. Bioorganic & medicinal chemistry, 24(4), 858–872. https://doi.org/10.1016/j.bmc. 2016.01.013
Baeeri, M., Foroumadi, A., Motamedi, M., Yahya-Meymandi, A., Firoozpour, L., Ostad, S. N., Shafiee, A., Souzangarzadeh, S., & Abdollahi, M. (2011). Safety and efficacy of new 3,6-diaryl-7H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazine analogs as potential phosphodiesterase-4 inhibitors in NIH-3T3 mouse fibroblastic cells. Chemical biology & drug design, 78(3), 438–444. https://doi.org/10.1111/ j.1747-0285.2011.01167.x
Bondar, O., Vasilenko, K., Makei, O., & Kurmakova, I. (2022). Quantum-chemical charac¬terization of the new [1,2,4]triazolo[1,5-a]pyrimidine derivatives with biological activity. BHT: Biota. Human. Technology, 1(1), 98–106. (in Ukrainian)
Бондар О., Василенко К., Макей О., Курмакова І. Квантово-хімічна характеристика нових біологічно активних похідних [1,2,4]триазоло[1,5-а]піримідину. BHT: Biota. Human. Technology. 2022. №1(1). С. 98–106.
Bondar, O., Tarasenko, I., Kurmakova, І., &Makei, O.(2025). Quantumchemical descriptors and biological activity of 2-amino-4-aryl-1,3-oxazoles. Biota. Human. Technology, (1), P.177-187. (in Ukrainian)
Бондар О., Тарасенко І., Курмакова І., Макей О. Квантово-хімічні дескриптори та біологічна активність 2-аміно-4-арил-1,3-оксазолів. Biota. Human. Technology. 2025. №1. С. 177–187. https://doi.org/10.58407/ bht.1.25.11
Chekman, I. S. (2010). Quantum pharmacology: new direction in materia medica. Science and innovations, 6(2), 29 – 35. (in Ukrainian).
Чекман І.С. Квантова фармакологія: новий напрям у лікознавстві. Наука та інновації. 2010. Т. 6. № 2. С. 29 –35.
Dai, J., Tian, S., Yang, X., & Liu, Z. (2022). Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Frontiers in chemistry, 10, 891484. https://doi.org/10.3389/fchem.2022.891484
Deohate, PP (2013) Synthesis, structural study and biological activity of bridgehead nitrogen containing triazolo-thiadiazine derivatives. Chem Sci Trans., 2(2), 556-560 https://doi:10.7598/ cst2013.397
Gallo, K., Goede, A., Preissner, R., & Gohlke, B.O. (2022). SuperPred 3.0: Drug classification and targetprediction-a machine learning approach. Nucleic Acids Research, 50(W1), W726–W731. https://doi.org/10.1093/nar/gkac297
Gomha, S. M., Muhammad, Z. A., Ezz El-Arab, E., Elmetwally, A. M., El-Sayed, A. A., & Matar, I. K. (2020). Design, Synthesis, Molecular Docking Study and Anti-Hepatocellular Carcinoma Evaluation of New Bis-Triazolothiadiazines. Mini reviews in medicinal chemistry, 20(9), 788–800. https://doi.org/ 10.2174/1389557519666191015130037
Golovenko, N. Ya. (2001). Some aspects of biochemistry, chemistry, molecular biology and genetics of cytochrome. Modern Problems of Toxicology, 3, 22-41.
Hussein, M. A., Shaker, R. M., Ameen, M. A., & Mohammed, M. F. (2011). Synthesis, anti-inflam-matory, analgesic, and antibacterial activities of some triazole, triazolothiadiazole, and triazolothiadiazine derivatives. Archives of pharmacal research, 34(8), 1239–1250. https:// doi.org/10.1007/s12272-011-0802-z
Ibrar, A., Zaib, S., Jabeen, F., Iqbal, J., & Saeed, A. (2016) Unraveling the alkaline phosphatase inhibition, anticancer, and antileishmanial potential of coumarin-triazolothiadiazine hybrids: design, synthesis, and molecular docking analysis. Arch. Pharm. Chem. Life Sci., 349, 553–565
Li, Z., Bai, X., Deng, Q., Zhang, G., Zhou, L., Liu, Y., Wang, J., & Wang, Y. (2017). Preliminary SAR and biological evaluation of antitubercular triazolothiadiazine derivatives against drug-susceptible and drug-resistant Mtb strains. Bioorganic & medicinal chemistry, 25(1), 213–220. https://doi.org/ 10.1016/j.bmc.2016.10.027
Liu, Z., Lang, B., Gao, M., Chang, X., Guan, Q., Xu, Q., Wu, D., Li, Z., Zuo, D., Zhang, W., & Wu, Y. (2020). 3-(3-Methoxyphenyl)-6-(3-amino-4-methoxyphenyl)-7H-[1,2,4] triazolo [3,4-b][1,3,4] thiadiazine, a novel tubulin inhibitor, evokes G2/M cell cycle arrest and apoptosis in SGC-7901 and HeLa cells. Journal of cellular biochemistry, 121(3), 2184–2196. https://doi.org/ 10.1002/jcb.29442
Ma, W., Chen, P., Huo, X., Ma, Y., Li, Y., Diao, P., Yang, F., Zheng, S., Hu, M., You, W., & Zhao, P. (2020). Development of triazolothiadiazine derivatives as highly potent tubulin polymerization inhibitors: Structure-activity relationship, in vitro and in vivo study. European journal of medicinal chemistry, 208, 112847. doi.org/10.1016/j.ejmech.2020.112847
Miao, R., Wei, J., Lv, M., Cai, Y., Du, Y., Hui, X., & Wang, Q. (2011). Conjugation of substituted ferrocenyl to thiadiazine as apoptosis-inducing agents targeting the Bax/Bcl-2 pathway. European journal of medicinal chemistry, 46(10), 5000–5009. https://doi.org/10.1016/ j.ejmech.2011.08.007
Muegge, I. (2003). Selection criteria for drug-like compounds. Medicinal Research Reviews, 23(3),302-321. https://doi.org/10.1002/med.10041
Purohit, D. H., Dodiya, B. L., Ghetiya, R. M., Vekariya, P. B., & Joshi, H. S. (2011). Synthesis and antimicrobial activity of some new 1,3,4-thiadiazoles and 1,3,4-thiadiazines containing 1,2,4-Triazolo nucleus. Acta chimica Slovenica, 58(1), 53–59
Puthiyapurayil, P., Poojary, B., Chikkanna, C., & Buridipad, S. K. (2012). Synthesis, spectral charac-terization and biological evaluation of a novel series of 6-arylsubstituted-3-[2-(4-substi¬tu-tedphenyl)propan-2-yl]-7H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazines. European journal of medicinal chemistry, 57, 407–416. https://doi.org/10.1016/j.ejmech.2012.06.059
Raunio, H., Juvonen, R. O., Poso, A., Lahtela-Kakkonen, M., &Rahnasto-Rilla, M. (2016). Common and distinct interactions of chemical inhibitors with cytochrome P450 CYP1A2, CYP2A6 and CYP2B6 enzymes. Drug Metabolism Letters, 10, 56–64. https://doi.org/10.2174/1872312810666151204 002456
Sever, B., Altıntop, M. D., Kuş, G., Özkurt, M., Özdemir, A., & Kaplancıklı, Z. A. (2016). Indomet¬hacin based new triazolothiadiazine derivatives: Synthesis, evaluation of their anticancer effects on T98 human glioma cell line related to COX-2 inhibition and docking studies. European journal of medicinal chemistry, 113, 179–186. https://doi.org/10.1016/ j.ejmech.2016.02.036
SitaRam, Celik, G., Khloya, P., Vullo, D., Supuran, C. T., & Sharma, P. K. (2014). Benzenesul¬fonamide bearing 1,2,4-triazole scaffolds as potent inhibitors of tumor associated carbonic anhydrase isoforms hCA IX and hCA XII. Bioorganic & medicinal chemistry, 22(6), 1873–1882. https://doi.org/ 10.1016/j.bmc.2014.01.055
Velec, H. F., Gohlke, H., & Klebe, G. (2005). DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. Journal of Medicinal Chemistry, 48(20), 6296-6303. https://doi.org/ 10.1021/jm050436v
Yanchenko, V. A., Demchenko, A. M., & Lozinskii, M. O. (2004). 6-Arylamino-3-methyl-7H-[1,2,4] triazolo[3,4-b][1,3,4]thiadiazines: Novel N-Arylamidine Structures. Chemistry of Hetero¬cyclic Compounds, 40(4), 516–518. https://doi:10.1023/b:cohc.0000033549.55639.56
Yanchenko, V.O., Smolskii, O.S., & Yasna, N.S. (2023). Biologically active substances. NUCHK.
Янченко В.О., Смольський О.С., Ясна Н.С. Біологічно активні речовини: навч. посіб. Чернігів: НУЧК. 2023. 348 с.
Zhang, B., Li, Y. H., Liu, Y., Chen, Y. R., Pan, E. S., You, W. W., & Zhao, P. L. (2015). Design, synthesis and biological evaluation of novel 1,2,4-triazolo [3,4-b][1,3,4] thiadiazines bearing furan and thiophene nucleus. European journal of medicinal chemistry, 103, 335–342. https://doi.org/ 10.1016/j.ejmech. 2015.08.053
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Віктор Янченко, Олена Бондар, Ольга Сидоренко, Наталія Ясна

This work is licensed under a Creative Commons Attribution 4.0 International License.