ЗНАЧЕННЯ ЗАЛІЗА В РАЦІОНІ ДОНОРІВ КРОВІ ТА ЇЇ КОМПОНЕНТІВ
DOI:
https://doi.org/10.58407/bht.3.24.6Ключові слова:
залізо, донори крові, добавки заліза, анемія, дієта, феритин, гемоглобін, засвоєння залізаАнотація
Мета дослідження: Ця публікація є оглядовою статтею і присвячена важливості заліза в раціоні донорів крові, а саме ролі цього мікроелемента в організмі людини, впливу донорства крові на його рівень та рекомендаціям щодо добавок і харчування, щоб запобігти дефіциту цього елемента. В умовах зростання кількості донорів крові та впливу цієї процедури на їхнє здоров’я, інформація, представлена в цій статті на основі результатів досліджень багатьох авторів, має важливе значення для розробки ефективних дієтичних стратегій.
Методологія. Для отримати даних дляї статті було здійснено пошуки у базах даних PubMed, Scopus, Web of Science і Google Scholar. При цьому обиралися лише такі комбінації ключових слів, як «добавки заліза», «донори крові», «дефіцит заліза», «дієтичне залізо», «профілактика анемії», «рівень феритину». Здійснено обробку літератури за період 1970-2024 років. Крім того було використано результати досліджень, опубліковані в рецензованих наукових журналах. Усі використані статті спочатку оцінювалися на основі їх назв та анотацій. При виборі враховували таку інформацію, як характеристики дослідних груп, методи оцінки рівня заліза, результати та зареєстровані побічні ефекти. Ключові результати щодо ефективності добавок заліза, впливу дієти та моніторингу рівня заліза обговорювалися в контексті їхньої актуальності для донорів крові.
Наукова новизна. У цій статті запропоновано комплексний підхід до вивчення ролі заліза в раціоні донорів крові, поєднуючи результати останніх досліджень із практичними рекомендаціями щодо дієти та добавок. Представлені як біологічні, так і практичні аспекти, що є інноваційним підходом до обговорюваної теми, а також поєднано знання з різних галузей, таких як гематологія, дієтологія, біохімія та профілактична медицина, що дозволяє всебічно проаналізувати цю проблему. Інтеграція цих дисциплін веде до кращого розуміння впливу заліза на здоров'я донорів крові. Цей огляд базується на останніх клінічних дослідженнях і мета-аналізах, що забезпечує достовірність представлених даних. Аналіз результатів останніх досліджень дозволяє сформулювати більш актуальні та точні рекомендації щодо препаратів заліза. Запропоновано персоналізувати дієтичні рекомендації для донорів крові, враховуючи індивідуальні потреби цих людей та індивідуальні метаболічні відмінності. Індивідуальний підхід до дієти та добавок заліза може підвищити ефективність запобігання дефіциту заліза. Висвітлено профілактичні стратегії, такі як програми підтримки донорів крові, які повинні включати регулярний моніторинг рівня заліза, освітницькі програми щодо харчування та добавок, а також індивідуальні дієтичні втручання. Звернено увагу на необхідність довгострокового моніторингу ефектів добавок заліза, яким часто нехтують в короткострокових дослідженнях, а довгостроковий підхід дозволить надійно оцінити тривалість ефектів добавок і його вплив на здоров'я донорів крові.
Висновки. Залізо відіграє фундаментальну роль у підтримці здоров'я донорів крові. Цей елемент необхідний для продукції гемоглобіну, транспортування кисню та багатьох інших метаболічних функцій. Регулярна здача крові викликає значну втрату цього мікроелемента, що може призвести до його дефіциту та анемії при неправильному поповненні. Щоб компенсувати втрату заліза, донорам крові слід звернути особливу увагу на свій раціон. Продукти, багаті гемовим залізом, такі як м’ясо та риба, і негемовим залізом, такі як бобові та зелені листові овочі, повинні складати основу їхнього раціону. Додатково прийом вітаміну С під час їжі може збільшити засвоєння негемового заліза. Регулярний прийом препаратів заліза є ефективним методом профілактики дефіциту заліза у донорів крові. Клінічні дослідження показали, що добавки заліза покращують рівень гемоглобіну та феритину, знижуючи ризик анемії. Добавки повинні підбиратися індивідуально, і донорів слід регулярно контролювати щодо рівня цього елемента в організмі. Просвітницькі програми донорів крові щодо важливості регулярного моніторингу рівня заліза, профілактики анемії та відповідної дієти має вирішальне значення. Програми підтримки, які включають регулярний моніторинг рівня заліза, надання добавок і індивідуальні рекомендації щодо дієти, можуть значно покращити здоров’я донорів і їх здатність продовжувати донорство. Необхідні подальші дослідження, щоб визначити оптимальні стратегії додавання заліза та їх довгостроковий вплив на здоров’я донорів крові. Дослідження також мають бути зосереджені на індивідуальних відмінностях у метаболізмі даного елемента та на розробці персоналізованих дієтичних рекомендацій.
Завантаження
Посилання
Abboud, S., & Haile, D.J. (2000). A novel mammalian iron-regulated protein involved in intracellular iron metabolism. The Journal of biological chemistry, 275(26), 19906–19912. https://doi.org/10.1074/jbc.M000713200
Agha, F., & Khan, R.A. (1989). Ferritin levels in professional blood donors. JPMA. The Journal of the Pakistan Medical Association, 39(5), 124–126.
Agrizzi Verediano, T., Agarwal, N., Juste Contin Gomes, M., Martino, H.S.D., & Tako, E. (2023). Effects of dietary fiber on intestinal iron absorption, and physiological status: a systematic review of in vivo and clinical studies. Critical reviews in food science and nutrition, 63(27), 9017–9032. https://doi.org/10.1080/10408398.2022.2060933
Al Hasan, S.M., Hassan, M., Saha, S., Islam, M., Billah, M., & Islam, S. (2016). Dietary Phytate Intake Inhibits the Bioavailability of Iron and Calcium in the Diets of Pregnant Women in Rural Bangladesh: A Cross-Sectional Study. BMC Nutrition, 2(1), 1–10. https://doi.org/10.1186/s40795-016-0064-8
Alexander, H.D., Sherlock, J.P., & Bharucha, C. (2000). Red cell indices as predictors of iron depletion in blood donors. Clinical and laboratory haematology, 22(5), 253–258. https://doi.org/10.1046/j.1365-2257.2000.00323.x
Alvarez-Ossorio, L., Kirchner, H., Klüter, H., & Schlenke, P. (2000). Low ferritin levels indicate the need for iron supplementation: strategy to minimize iron-depletion in regular blood donors. Transfusion medicine (Oxford, England), 10(2), 107–112. https://doi.org/10.1046/j.1365-3148.2000.00239.x
Andrews N.C. (2004). Anemia of inflammation: the cytokine-hepcidin link. The Journal of clinical investigation, 113(9), 1251–1253. https://doi.org/10.1172/JCI21441
Andrews N.C. (2008). Forging a field: the golden age of iron biology. Blood, 112(2), 219–230. https://doi.org/10.1182/blood-2007-12-077388
Andrews, N.C., & Schmidt, P.J. (2007). Iron homeostasis. Annual review of physiology, 69, 69–85. https://doi.org/10.1146/annurev.physiol.69.031905.164337
Andriopoulos, B., Jr, Corradini, E., Xia, Y., Faasse, S.A., Chen, S., Grgurevic, L., Knutson, M.D., Pietrangelo, A., Vukicevic, S., Lin, H.Y., & Babitt, J.L. (2009). BMP6 is a key endogenous regulator of hepcidin expression and iron metabolism. Nature genetics, 41(4), 482–487. https://doi.org/10.1038/ng.335
Anju, J., Abhishekh, B., Debdatta, B., Bobby, Z., & Sharan, M. (2022). Assessment of iron status in regular blood donors in a tertiary care hospital in Southern India. Asian journal of transfusion science, 16(2), 186–193. https://doi.org/10.4103/ajts.ajts_119_21
Armah, S.M., Boy, E., Chen, D., Candal, P., & Reddy, M.B. (2015). Regular Consumption of a High-Phytate Diet Reduces the Inhibitory Effect of Phytate on Nonheme-Iron Absorption in Women with Suboptimal Iron Stores. The Journal of nutrition, 145(8), 1735–1739. https://doi.org/10.3945/jn.114.209957
Arosio, P., & Levi, S. (2010). Cytosolic and mitochondrial ferritins in the regulation of cellular iron homeostasis and oxidative damage. Biochimica et biophysica acta, 1800(8), 783–792. https://doi.org/10.1016/j.bbagen.2010.02.005
Attaullah, A., Abid A., Niaz, A., Amjad (2023). Diet and Time Related Changes in Hemoglobin and Hematocrit Levels in Blood Donors. Biomedical Journal of Scientific & Technical Research, 52, 43862. https://doi.org/10.26717/BJSTR.2023.52.008277.
Baart, A.M., van Noord, P.A., Vergouwe, Y., Moons, K.G., Swinkels, D.W., Wiegerinck, E.T., de Kort, W.L., & Atsma, F. (2013). High prevalence of subclinical iron deficiency in whole blood donors not deferred for low hemoglobin. Transfusion, 53(8), 1670–1677. https://doi.org/10.1111/j.1537-2995.2012.03956.x
Babitt, J.L., Huang, F.W., Wrighting, D.M., Xia, Y., Sidis, Y., Samad, T.A., Campagna, J.A., Chung, R.T., Schneyer, A.L., Woolf, C.J., Andrews, N.C., & Lin, H.Y. (2006). Bone morphogenetic protein signaling by hemojuvelin regulates hepcidin expression. Nature genetics, 38(5), 531–539. https://doi.org/10.1038/ng1777
Baech, S.B., Hansen, M., Bukhave, K., Jensen, M., Sørensen, S.S., Kristensen, L., Purslow, P.P., Skibsted, L.H., & Sandström, B. (2003). Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of pork meat. The American journal of clinical nutrition, 77(1), 173–179. https://doi.org/10.1093/ajcn/77.1.173
Benkhedda, K., L'abbé, M.R., & Cockell, K.A. (2010). Effect of calcium on iron absorption in women with marginal iron status. The British journal of nutrition, 103(5), 742–748. https://doi.org/10.1017/S0007114509992418
Birgegård, G., Schneider, K., & Ulfberg, J. (2010). High incidence of iron depletion and restless leg syndrome (RLS) in regular blood donors: intravenous iron sucrose substitution more effective than oral iron. Vox sanguinis, 99(4), 354–361. https://doi.org/10.1111/j.1423-0410.2010.01368.x
Björn-Rasmussen, E., & Hallberg, L. (1979). Effect of animal proteins on the absorption of food iron in man. Nutrition and metabolism, 23(3), 192–202. https://doi.org/10.1159/000176256
Blood Donor Counselling: Implementation Guidelines. Geneva: World Health Organization; 2014. Annex 1, Haemoglobin and iron: information for blood donors. Available from: https://www.ncbi.nlm.nih.gov/books/NBK310577/
Boccio, J., Salgueiro, J., Lysionek, A., Zubillaga, M., Weill, R., Goldman, C., & Caro, R. (2003). Current knowledge of iron metabolism. Biological trace element research, 92(3), 189–212. https://doi.org/10.1385/BTER:92:3:189
Bohn, L., Meyer, A.S., & Rasmussen, S.K. (2008). Phytate: impact on environment and human nutrition. A challenge for molecular breeding. Journal of Zhejiang University. Science. B, 9(3), 165–191. https://doi.org/10.1631/jzus.B0710640
Bosscher, D., Van Caillie-Bertrand, M., Van Cauwenbergh, R., & Deelstra, H. (2003). Availabilities of calcium, iron, and zinc from dairy infant formulas is affected by soluble dietary fibers and modified starch fractions. Nutrition (Burbank, Los Angeles County, Calif.), 19(7-8), 641–645. https://doi.org/10.1016/s0899-9007(03)00063-7
Boulton F. (2004). Managing donors and iron deficiency. Vox sanguinis, 87 Suppl. 2, 22–24. https://doi.org/10.1111/j.1741-6892.2004.00448.x
Bourque, S.P., Pate, R.R., & Branch, J.D. (1997). Twelve weeks of endurance exercise training does not affect iron status measures in women. Journal of the American Dietetic Association, 97(10), 1116–1121. https://doi.org/10.1016/S0002-8223(97)00272-1
Brittenham G.M. (2011). Iron deficiency in whole blood donors. Transfusion, 51(3), 458–461. https://doi.org/10.1111/j.1537-2995.2011.03062.x
Brouns F. (2021). Phytic Acid and Whole Grains for Health Controversy. Nutrients, 14(1), 25. https://doi.org/10.3390/nu14010025
Bryant, B.J., Yau, Y.Y., Arceo, S.M., Daniel-Johnson, J., Hopkins, J.A., & Leitman, S.F. (2012). Iron replacement therapy in the routine management of blood donors. Transfusion, 52(7), 1566–1575. https://doi.org/10.1111/j.1537-2995.2011.03488.x
Cable, R.G., Brambilla, D., Glynn, S.A., Kleinman, S., Mast, A.E., Spencer, B.R., Stone, M., Kiss, J.E., & National Heart, Lung, and Blood Institute Recipient Epidemiology and Donor Evaluation Study-III (REDS-III) (2016). Effect of iron supplementation on iron stores and total body iron after whole blood donation. Transfusion, 56(8), 2005–2012. https://doi.org/10.1111/trf.13659
Cable, R.G., Glynn, S.A., Kiss, J.E., Mast, A.E., Steele, W.R., Murphy, E.L., Wright, D.J., Sacher, R.A., Gottschall, J.L., Tobler, L.H., Simon, T.L., & NHLBI Retrovirus Epidemiology Donor Study-II (REDS-II) (2012). Iron deficiency in blood donors: the REDS-II Donor Iron Status Evaluation (RISE) study. Transfusion, 52(4), 702–711. https://doi.org/10.1111/j.1537-2995.2011.03401.x
Cable, R.G., Glynn, S.A., Kiss, J.E., Mast, A.E., Steele, W.R., Murphy, E.L., Wright, D.J., Sacher, R.A., Gottschall, J.L., Vij, V., Simon, T.L., & NHLBI Retrovirus Epidemiology Donor Study-II (2011). Iron deficiency in blood donors: analysis of enrollment data from the REDS-II Donor Iron Status Evaluation (RISE) study. Transfusion, 51(3), 511–522. https://doi.org/10.1111/j.1537-2995.2010.02865.x
Cao, C., Thomas, C.E., Insogna, K.L., & O'Brien, K.O. (2014). Duodenal absorption and tissue utilization of dietary heme and nonheme iron differ in rats. The Journal of nutrition, 144(11), 1710–1717. https://doi.org/10.3945/jn.114.197939
Capuano E. (2017). The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Critical reviews in food science and nutrition, 57(16), 3543–3564. https://doi.org/10.1080/10408398.2016.1180501
Castel, R., Tax, M.G., Droogendijk, J., Leers, M.P., Beukers, R., Levin, M.D., Sonneveld, P., & Berendes, P.B. (2012). The transferrin/log(ferritin) ratio: a new tool for the diagnosis of iron deficiency anemia. Clinical chemistry and laboratory medicine, 50(8), 1343–1349. https://doi.org/10.1515/cclm-2011-0594
Caulier, A.L., & Sankaran, V.G. (2022). Molecular and cellular mechanisms that regulate human erythropoiesis. Blood, 139(16), 2450–2459. https://doi.org/10.1182/blood.2021011044
Cepeda-Lopez, A.C., Melse-Boonstra, A., Zimmermann, M.B., & Herter-Aeberli, I. (2015). In overweight and obese women, dietary iron absorption is reduced and the enhancement of iron absorption by ascorbic acid is one-half that in normal-weight women. The American journal of clinical nutrition, 102(6), 1389–1397. https://doi.org/10.3945/ajcn.114.099218
Chen, Y., Michalak, M., & Agellon, L.B. (2018). Importance of Nutrients and Nutrient Metabolism on Human Health. The Yale journal of biology and medicine, 91(2), 95–103.
Chiamchanya N. (2013). Rapid recovery time of hemoglobin level in female regular blood donors with ferrous fumarate and high dose of ascorbic acid supplement. Journal of the Medical Association of Thailand = Chotmaihet thangphaet, 96(2), 165–171.
Chifman, J., Laubenbacher, R., & Torti, S.V. (2014). A systems biology approach to iron metabolism. Advances in experimental medicine and biology, 844, 201–225. https://doi.org/10.1007/978-1-4939-2095-2_10
Clark S.F. (2009). Iron deficiency anemia: diagnosis and management. Current opinion in gastroenterology, 25(2), 122–128. https://doi.org/10.1097/MOG.0b013e32831ef1cd
Conrad, M.E., & Umbreit, J.N. (2002). Pathways of iron absorption. Blood cells, molecules & diseases, 29(3), 336–355. https://doi.org/10.1006/bcmd.2002.0564
Cook, J.D., & Monsen, E.R. (1976). Food iron absorption in human subjects. III. Comparison of the effect of animal proteins on nonheme iron absorption. The American journal of clinical nutrition, 29(8), 859–867. https://doi.org/10.1093/ajcn/29.8.859
Cook, J.D., & Monsen, E.R. (1977). Vitamin C, the common cold, and iron absorption. The American journal of clinical nutrition, 30(2), 235–241. https://doi.org/10.1093/ajcn/30.2.235
Cook, J.D., & Reddy, M.B. (2001). Effect of ascorbic acid intake on nonheme-iron absorption from a complete diet. The American journal of clinical nutrition, 73(1), 93–98. https://doi.org/10.1093/ajcn/73.1.93
Cook, J.D., Dassenko, S.A., & Whittaker, P. (1991). Calcium supplementation: effect on iron absorption. The American journal of clinical nutrition, 53(1), 106–111. https://doi.org/10.1093/ajcn/53.1.106
Cook, J.D., Flowers, C.H., & Skikne, B.S. (2003). The quantitative assessment of body iron. Blood, 101(9), 3359–3364. https://doi.org/10.1182/blood-2002-10-3071
Cook, J.D., Morck, T.A., & Lynch, S.R. (1981). The inhibitory effect of soy products on nonheme iron absorption in man. The American journal of clinical nutrition, 34(12), 2622–2629. https://doi.org/10.1093/ajcn/34.12.2622
Cook, J.D., Watson, S.S., Simpson, K.M., Lipschitz, D.A., & Skikne, B.S. (1984). The effect of high ascorbic acid supplementation on body iron stores. Blood, 64(3), 721–726.
Czerwonka, M., & Tokarz, A. (2017). Iron in red meat-friend or foe. Meat science, 123, 157–165. https://doi.org/10.1016/j.meatsci.2016.09.012
Datta, S., Pal, M., & Ghosh, C. (2013). Effect of frequent blood donation on iron status of blood donors in Burdwan, West Bengal, India. Journal of Drug Delivery and Therapeutics, 3, 66–69.
Davidsson, L., Walczyk, T., Morris, A., & Hurrell, R.F. (1998). Influence of ascorbic acid on iron absorption from an iron-fortified, chocolate-flavored milk drink in Jamaican children. The American journal of clinical nutrition, 67(5), 873–877. https://doi.org/10.1093/ajcn/67.5.873
Dawson-Hughes, B., Seligson, F.H., & Hughes, V.A. (1986). Effects of calcium carbonate and hydroxyapatite on zinc and iron retention in postmenopausal women. The American journal of clinical nutrition, 44(1), 83–88. https://doi.org/10.1093/ajcn/44.1.83
De Domenico, I., Lo, E., Ward, D.M., & Kaplan, J. (2009). Hepcidin-induced internalization of ferroportin requires binding and cooperative interaction with Jak2. Proceedings of the National Academy of Sciences of the United States of America, 106(10), 3800–3805. https://doi.org/10.1073/pnas.0900453106
De Domenico, I., Ward, D.M., & Kaplan, J. (2007). Hepcidin regulation: ironing out the details. The Journal of clinical investigation, 117(7), 1755–1758. https://doi.org/10.1172/JCI32701
Dean L. Blood Groups and Red Cell Antigens [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2005. Chapter 1, Blood and the cells it contains. Available from: https://www.ncbi.nlm.nih.gov/books/NBK2263/
Dhingra, D., Michael, M., Rajput, H., & Patil, R.T. (2012). Dietary fibre in foods: a review. Journal of food science and technology, 49(3), 255–266. https://doi.org/10.1007/s13197-011-0365-5
Djalali, M., Neyestani, T.R., Bateni, J., & Siassi, F. (2006). The effect of repeated blood donations on the iron status of Iranian blood donors attending the Iranian blood transfusion organization. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin - und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 76(3), 132–137. https://doi.org/10.1024/0300-9831.76.3.132
Donovan, A., Lima, C.A., Pinkus, J.L., Pinkus, G.S., Zon, L.I., Robine, S., & Andrews, N.C. (2005). The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell metabolism, 1(3), 191–200. https://doi.org/10.1016/j.cmet.2005.01.003
Drexler, C., Macher, S., Lindenau, I., Holter, M., Moritz, M., Stojakovic, T., Pieber, T.R., Schlenke, P., & Amrein, K. (2020). High-dose intravenous versus oral iron in blood donors with iron deficiency: The IronWoMan randomized, controlled clinical trial. Clinical nutrition (Edinburgh, Scotland), 39(3), 737–745. https://doi.org/10.1016/j.clnu.2019.03.025
Engelmann, M.D., Davidsson, L., Sandström, B., Walczyk, T., Hurrell, R.F., & Michaelsen, K. F. (1998). The influence of meat on nonheme iron absorption in infants. Pediatric research, 43(6), 768–773. https://doi.org/10.1203/00006450-199806000-00009
Erhabor, O., Imrana, S., Buhari, H.A., Wase, A., & Ikhuenbor, D.A. (2014). Iron deficiency among blood donors in sokoto, north western, Nigeria. Open Journal of Blood Diseases, 4, 33–42.
Feltrin, C., Batista de Morais, M., de Cássia Freitas, K., Beninga de Morais, T., Fagundes Neto, U., & Silvério Amancio, O.M. (2009). Effect of soluble fiber pectin on growth and intestinal iron absorption in rats during recovery from iron deficiency anemia. Biological trace element research, 129(1-3), 221–228. https://doi.org/10.1007/s12011-008-8307-4
Ferreira, G.C., & Gong, J. (1995). 5-Aminolevulinate synthase and the first step of heme biosynthesis. Journal of bioenergetics and biomembranes, 27(2), 151–159. https://doi.org/10.1007/BF02110030
Ferris, C.D., Jaffrey, S.R., Sawa, A., Takahashi, M., Brady, S.D., Barrow, R.K., Tysoe, S.A., Wolosker, H., Barañano, D.E., Doré, S., Poss, K.D., & Snyder, S.H. (1999). Haem oxygenase-1 prevents cell death by regulating cellular iron. Nature cell biology, 1(3), 152–157. https://doi.org/10.1038/11072
Finch, C.A., Cook, J.D., Labbe, R.F., & Culala, M. (1977). Effect of blood donation on iron stores as evaluated by serum ferritin. Blood, 50(3), 441–447.
Fleming, R.E., & Bacon, B.R. (2005). Orchestration of iron homeostasis. The New England journal of medicine, 352(17), 1741–1744. https://doi.org/10.1056/NEJMp048363
Fowler, W.M., & Barer, A.P. (1942). Rate of hemoglobin regeneration in blood donors. JAMA, 118(6), 421–427.
Gaitán, D., Flores, S., Saavedra, P., Miranda, C., Olivares, M., Arredondo, M., López de Romaña, D., Lönnerdal, B., & Pizarro, F. (2011). Calcium does not inhibit the absorption of 5 milligrams of nonheme or heme iron at doses less than 800 milligrams in nonpregnant women. The Journal of nutrition, 141(9), 1652–1656. https://doi.org/10.3945/jn.111.138651
Gammon, R.R., Dubey, R., Gupta, G.K., Hinrichsen, C., Jindal, A., Lamba, D.S., Mangwana, S., Radhakrishnan Nair, A., Nalezinski, S., & Bocquet, C. (2023). Patient Blood Management and Its Role in Supporting Blood Supply. Journal of blood medicine, 14, 595–611. https://doi.org/10.2147/JBM.S387322
Gammon, R.R., Rosenbaum, L., Cooke, R., Friedman, M., Rockwood, L., Nichols, T., & Vossoughi, S. (2021). Maintaining adequate donations and a sustainable blood supply: Lessons learned. Transfusion, 61(1), 294–302. https://doi.org/10.1111/trf.16145
Gao, J., Chen, J., Kramer, M., Tsukamoto, H., Zhang, A.S., & Enns, C.A. (2009). Interaction of the hereditary hemochromatosis protein HFE with transferrin receptor 2 is required for transferrin-induced hepcidin expression. Cell metabolism, 9(3), 217–227. https://doi.org/10.1016/j.cmet.2009.01.010
Garland, V., Herlitz, L., & Regunathan-Shenk, R. (2020). Diet-induced oxalate nephropathy from excessive nut and seed consumption. BMJ case reports, 13(11), e237212. https://doi.org/10.1136/bcr-2020-237212
Geisser, P., & Burckhardt, S. (2011). The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics, 3(1), 12–33. https://doi.org/10.3390/pharmaceutics3010012
Gibson, R.S., Bailey, K.B., Gibbs, M., & Ferguson, E.L. (2010). A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food and nutrition bulletin, 31(2 Suppl), S134–S146. https://doi.org/10.1177/15648265100312S206
Gordeuk, V.R., Brittenham, G.M., Bravo, J., Hughes, M.A., & Keating, L.J. (1990). Prevention of iron deficiency with carbonyl iron in female blood donors. Transfusion, 30(3), 239–245. https://doi.org/10.1046/j.1537-2995.1990.30390194345.x
Gordon, D.T., & Chao, L.S. (1984). Relationship of components in wheat bran and spinach to iron bioavailability in the anemic rat. The Journal of nutrition, 114(3), 526–535. https://doi.org/10.1093/jn/114.3.526
Gulec, S., Anderson, G.J., & Collins, J.F. (2014). Mechanistic and regulatory aspects of intestinal iron absorption. American journal of physiology. Gastrointestinal and liver physiology, 307(4), G397–G409. https://doi.org/10.1152/ajpgi.00348.2013
Gunshin, H., Mackenzie, B., Berger, U.V., Gunshin, Y., Romero, M.F., Boron, W. F., Nussberger, S., Gollan, J.L., & Hediger, M.A. (1997). Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature, 388(6641), 482–488. https://doi.org/10.1038/41343
Gupta, S., Lakshmi, J., & Prakash, J. (2006). In Vitro Bioavailability of Calcium and Iron from Selected Green Leafy Vegetables. Journal of the Science of Food and Agriculture, 86, 2147–2152. https://doi.org/10.1002/jsfa.2589.
Guyatt, G.H., Oxman, A.D., Ali, M., Willan, A., McIlroy, W., & Patterson, C. (1992). Laboratory diagnosis of iron-deficiency anemia: an overview. Journal of general internal medicine, 7(2), 145–153. https://doi.org/10.1007/BF02598003
Gybel-Brask, M., Seeberg, J., Thomsen, L.L., & Johansson, P.I. (2018). Intravenous iron isomaltoside improves hemoglobin concentration and iron stores in female iron-deficient blood donors: a randomized double-blind placebo-controlled clinical trial. Transfusion, 58(4), 974–981. https://doi.org/10.1111/trf.14521
Hallberg, L., Brune, M., & Rossander, L. (1989). Iron absorption in man: ascorbic acid and dose-dependent inhibition by phytate. The American journal of clinical nutrition, 49(1), 140–144. https://doi.org/10.1093/ajcn/49.1.140
Hallberg, L., Brune, M., Erlandsson, M., Sandberg, A.S., & Rossander-Hultén, L. (1991). Calcium: effect of different amounts on nonheme- and heme-iron absorption in humans. The American journal of clinical nutrition, 53(1), 112–119. https://doi.org/10.1093/ajcn/53.1.112
Hallberg, L., Rossander, L., & Skånberg, A.B. (1987). Phytates and the inhibitory effect of bran on iron absorption in man. The American journal of clinical nutrition, 45(5), 988–996. https://doi.org/10.1093/ajcn/45.5.988
Hallberg, L., Rossander-Hulthén, L., Brune, M., & Gleerup, A. (1993). Inhibition of haem-iron absorption in man by calcium. The British journal of nutrition, 69(2), 533–540. https://doi.org/10.1079/bjn19930053
Harland, B.F. & Morris, E.R. (1995). Phytate: A Good or a Bad Food Component?. Nutrition research (New York, N.Y.), 15(5), 733–754. https://doi.org/10.1016/0271-5317(95)00040-P
Hart, J.J., Tako, E., & Glahn, R.P. (2017). Characterization of Polyphenol Effects on Inhibition and Promotion of Iron Uptake by Caco-2 Cells. Journal of agricultural and food chemistry, 65(16), 3285–3294. https://doi.org/10.1021/acs.jafc.6b05755
Hart, J.J., Tako, E., Kochian, L.V., & Glahn, R.P. (2015). Identification of Black Bean (Phaseolus vulgaris L.) Polyphenols That Inhibit and Promote Iron Uptake by Caco-2 Cells. Journal of agricultural and food chemistry, 63(25), 5950–5956. https://doi.org/10.1021/acs.jafc.5b00531
He, W., Li, X., Ding, K., Li, Y., & Li, W. (2018). Ascorbic Acid can Reverse the Inhibition of Phytic Acid, Sodium Oxalate and Sodium Silicate on Iron Absorption in Caco-2 cells. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 88(1-2), 65–72. https://doi.org/10.1024/0300-9831/a000503
Heaney, R.P., Weaver, C.M., & Recker, R.R. (1988). Calcium absorbability from spinach. The American journal of clinical nutrition, 47(4), 707–709. https://doi.org/10.1093/ajcn/47.4.707
Hentze, M.W., & Kühn, L.C. (1996). Molecular control of vertebrate iron metabolism: mRNA-based regulatory circuits operated by iron, nitric oxide, and oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 93(16), 8175–8182. https://doi.org/10.1073/pnas.93.16.8175
Hentze, M.W., Muckenthaler, M.U., Galy, B., & Camaschella, C. (2010). Two to tango: regulation of Mammalian iron metabolism. Cell, 142(1), 24–38. https://doi.org/10.1016/j.cell.2010.06.028
Hernández Lamas, M.C., López Pérez-Lanzac, J.C., Prat Arrojo, I., Sánchez Gordo, F., Arleth Christensen, E., & Sánchez Font, E. (1994). Determinación de ferritina sérica: consideraciones para evitar ferropenia inducida en donantes de sangre [Determination of serum ferritin: ideas for avoiding induced ferropenia in blood donors]. Sangre, 39(1), 9–14.
Hinton P.S. (2014). Iron and the endurance athlete. Applied physiology, nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme, 39(9), 1012–1018. https://doi.org/10.1139/apnm-2014-0147
Hoppe, M., Brün, B., Larsson, M. P., Moraeus, L., & Hulthén, L. (2013). Heme iron-based dietary intervention for improvement of iron status in young women. Nutrition (Burbank, Los Angeles County, Calif.), 29(1), 89–95. https://doi.org/10.1016/j.nut.2012.04.013
Hoppe, M., Ross, A.B., Svelander, C., Sandberg, A.S., & Hulthén, L. (2019). Low-phytate wholegrain bread instead of high-phytate wholegrain bread in a total diet context did not improve iron status of healthy Swedish females: a 12-week, randomized, parallel-design intervention study. European journal of nutrition, 58(2), 853–864. https://doi.org/10.1007/s00394-018-1722-1
Hower, V., Mendes, P., Torti, F.M., Laubenbacher, R., Akman, S., Shulaev, V., & Torti, S.V. (2009). A general map of iron metabolism and tissue-specific subnetworks. Molecular bioSystems, 5(5), 422–443. https://doi.org/10.1039/b816714c
Hunt, J.R., Gallagher, S.K., & Johnson, L.K. (1994). Effect of ascorbic acid on apparent iron absorption by women with low iron stores. The American journal of clinical nutrition, 59(6), 1381–1385. https://doi.org/10.1093/ajcn/59.6.1381
Hurrell R.F. (1997). Preventing iron deficiency through food fortification. Nutrition reviews, 55(6), 210–222. https://doi.org/10.1111/j.1753-4887.1997.tb01608.x
Hurrell, R.F., Reddy, M.B., Juillerat, M., & Cook, J.D. (2006). Meat protein fractions enhance nonheme iron absorption in humans. The Journal of nutrition, 136(11), 2808–2812. https://doi.org/10.1093/jn/136.11.2808
Hurrell, R., & Egli, I. (2010). Iron bioavailability and dietary reference values. The American journal of clinical nutrition, 91(5), 1461S–1467S. https://doi.org/10.3945/ajcn.2010.28674F
Institute of Medicine (US) Panel on Micronutrients (2001). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press (US).
Ishikawa, S.I., Tamaki, S., Arihara, K., & Itoh, M. (2007). Egg yolk protein and egg yolk phosvitin inhibit calcium, magnesium, and iron absorptions in rats. Journal of food science, 72(6), S412–S419. https://doi.org/10.1111/j.1750-3841.2007.00417.x
Jain, A., Chowdhury, N., Jain, S., Uttam, N., & Meinia, S.K. (2018). Altered Red Cell Indices in Repeat Blood Donors: Experience of a North Indian Blood Bank. Indian journal of hematology & blood transfusion: an official journal of Indian Society of Hematology and Blood Transfusion, 34(4), 666–670. https://doi.org/10.1007/s12288-018-0954-9
Johnson, M.B., & Enns, C.A. (2004). Diferric transferrin regulates transferrin receptor 2 protein stability. Blood, 104(13), 4287–4293. https://doi.org/10.1182/blood-2004-06-2477
Johnson-Wimbley, T.D., & Graham, D.Y. (2011). Diagnosis and management of iron deficiency anemia in the 21st century. Therapeutic advances in gastroenterology, 4(3), 177–184. https://doi.org/10.1177/1756283X11398736
Karp, J.K., & King, K.E. (2010). International variation in volunteer whole blood donor eligibility criteria. Transfusion, 50(2), 507–513. https://doi.org/10.1111/j.1537-2995.2009.02392.x
Keel, S.B., Doty, R.T., Yang, Z., Quigley, J.G., Chen, J., Knoblaugh, S., Kingsley, P.D., De Domenico, I., Vaughn, M.B., Kaplan, J., Palis, J., & Abkowitz, J.L. (2008). A heme export protein is required for red blood cell differentiation and iron homeostasis. Science (New York, N.Y.), 319(5864), 825–828. https://doi.org/10.1126/science.1151133
Kelsay, J.L., & Prather, E.S. (1983). Mineral balances of human subjects consuming spinach in a low-fiber diet and in a diet containing fruits and vegetables. The American journal of clinical nutrition, 38(1), 12–19. https://doi.org/10.1093/ajcn/38.1.12
Khoja, K.K., Aslam, M.F., Sharp, P.A., & Latunde-Dada, G.O. (2021). In vitro bioaccessibility and bioavailability of iron from fenugreek, baobab and moringa. Food chemistry, 335, 127671. https://doi.org/10.1016/j.foodchem.2020.127671
Kim, M., Lee, D.T., & Lee, Y.S. (1995). Iron Absorption and Intestinal Solubility in Rats Are Influenced by Dietary Proteins. Nutrition research (New York, N.Y.), 15(11), 1705–1716. https://doi.org/10.1016/0271-5317(95)02041-0.
Kiss J.E. (2015). Laboratory and genetic assessment of iron deficiency in blood donors. Clinics in laboratory medicine, 35(1), 73–91. https://doi.org/10.1016/j.cll.2014.10.011
Kiss, J.E., Brambilla, D., Glynn, S.A., Mast, A.E., Spencer, B.R., Stone, M., Kleinman, S. H., Cable, R.G., & National Heart, Lung, and Blood Institute (NHLBI) Recipient Epidemiology and Donor Evaluation Study–III (REDS-III) (2015). Oral iron supplementation after blood donation: a randomized clinical trial. JAMA, 313(6), 575–583. https://doi.org/10.1001/jama.2015.119
Kiss, J.E., Steele, W.R., Wright, D.J., Mast, A.E., Carey, P.M., Murphy, E.L., Gottschall, J. L., Simon, T.L., Cable, R.G., & NHLBI Retrovirus Epidemiology Donor Study-II (2013). Laboratory variables for assessing iron deficiency in REDS-II Iron Status Evaluation (RISE) blood donors. Transfusion, 53(11), 2766–2775. https://doi.org/10.1111/trf.12209
Kotzé, S.R., Pedersen, O.B., Petersen, M.S., Sørensen, E., Thørner, L.W., Sørensen, C.J., Rigas, A.S., Hjalgrim, H., Rostgaard, K., Ullum, H., & Erikstrup, C. (2015). Predictors of hemoglobin in Danish blood donors: results from the Danish Blood Donor Study. Transfusion, 55(6), 1303–1311. https://doi.org/10.1111/trf.13011
Krayenbuehl, P.A., Battegay, E., Breymann, C., Furrer, J., & Schulthess, G. (2011). Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood, 118(12), 3222–3227. https://doi.org/10.1182/blood-2011-04-346304
Krishnamurthy, P., Xie, T., & Schuetz, J.D. (2007). The role of transporters in cellular heme and porphyrin homeostasis. Pharmacology & therapeutics, 114(3), 345–358. https://doi.org/10.1016/j.pharmthera.2007.02.001
Layrisse, M., Martínez-Torres, C., & Roche, M. (1968). Effect of interaction of various foods on iron absorption. The American journal of clinical nutrition, 21(10), 1175–1183. https://doi.org/10.1093/ajcn/21.10.1175
Lazrak, M., El Kari, K., Stoffel, N.U., Elammari, L., Al-Jawaldeh, A., Loechl, C.U., Yahyane, A., Barkat, A., Zimmermann, M.B., & Aguenaou, H. (2021). Tea Consumption Reduces Iron Bioavailability from NaFeEDTA in Nonanemic Women and Women with Iron Deficiency Anemia: Stable Iron Isotope Studies in Morocco. The Journal of nutrition, 151(9), 2714–2720. https://doi.org/10.1093/jn/nxab159
Lee, D.H., Zhou, L.J., Zhou, Z., Xie, J.X., Jung, J.U., Liu, Y., Xi, C.X., Mei, L., & Xiong, W.C. (2010). Neogenin inhibits HJV secretion and regulates BMP-induced hepcidin expression and iron homeostasis. Blood, 115(15), 3136–3145. https://doi.org/10.1182/blood-2009-11-251199
Liuzzi, J.P., Aydemir, F., Nam, H., Knutson, M.D., & Cousins, R.J. (2006). Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells. Proceedings of the National Academy of Sciences of the United States of America, 103(37), 13612–13617. https://doi.org/10.1073/pnas.0606424103
Lobier, M., Castrén, J., Niittymäki, P., Palokangas, E., Partanen, J., & Arvas, M. (2019). The effect of donation activity dwarfs the effect of lifestyle, diet and targeted iron supplementation on blood donor iron stores. PloS one, 14(8), e0220862. https://doi.org/10.1371/journal.pone.0220862
Lönnerdal B. (2010). Calcium and iron absorption--mechanisms and public health relevance. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 80(4-5), 293–299. https://doi.org/10.1024/0300-9831/a000036
Lynch S. The rationale for selecting and standardizing iron status indicators. Geneva: World Health Organization; 2012.
Lynch, S.R., & Cook, J.D. (1980). Interaction of vitamin C and iron. Annals of the New York Academy of Sciences, 355, 32–44. https://doi.org/10.1111/j.1749-6632.1980.tb21325.x
Lynch, S.R., Dassenko, S.A., Cook, J.D., Juillerat, M.A., & Hurrell, R.F. (1994). Inhibitory effect of a soybean-protein-related moiety on iron absorption in humans. The American journal of clinical nutrition, 60(4), 567–572. https://doi.org/10.1093/ajcn/60.4.567
Ma, Q., Kim, E.Y., Lindsay, E.A., & Han, O. (2011). Bioactive dietary polyphenols inhibit heme iron absorption in a dose-dependent manner in human intestinal Caco-2 cells. Journal of food science, 76(5), H143–H150. https://doi.org/10.1111/j.1750-3841.2011.02184.x
Macher, S., Herster, C., Holter, M., Moritz, M., Matzhold, E.M., Stojakovic, T., Pieber, T. R., Schlenke, P., Drexler, C., & Amrein, K. (2020). The Effect of Parenteral or Oral Iron Supplementation on Fatigue, Sleep, Quality of Life and Restless Legs Syndrome in Iron-Deficient Blood Donors: A Secondary Analysis of the IronWoMan RCT. Nutrients, 12(5), 1313. https://doi.org/10.3390/nu12051313
Mackenzie, B., & Garrick, M.D. (2005). Iron Imports. II. Iron uptake at the apical membrane in the intestine. American journal of physiology. Gastrointestinal and liver physiology, 289(6), G981–G986. https://doi.org/10.1152/ajpgi.00363.2005
Mahida, V.I., Bhatti, A., & Gupte, S.C. (2008). Iron status of regular voluntary blood donors. Asian journal of transfusion science, 2(1), 9–12. https://doi.org/10.4103/0973-6247.39504
Mantadakis, E., Panagopoulou, P., Kontekaki, E., Bezirgiannidou, Z., & Martinis, G. (2022). Iron Deficiency and Blood Donation: Links, Risks and Management. Journal of blood medicine, 13, 775–786. https://doi.org/10.2147/JBM.S375945
Marks, D.C., Speedy, J., Robinson, K.L., Brama, T., Capper, H.R., Mondy, P., & Keller, A. J. (2014). An 8-week course of 45 mg of carbonyl iron daily reduces iron deficiency in female whole blood donors aged 18 to 45 years: results of a prospective randomized controlled trial. Transfusion, 54(3 Pt 2), 780–788. https://doi.org/10.1111/trf.12464
Mast A.E. (2014). Low hemoglobin deferral in blood donors. Transfusion medicine reviews, 28(1), 18–22. https://doi.org/10.1016/j.tmrv.2013.11.001
Mast, A.E., Bialkowski, W., Bryant, B.J., Wright, D.J., Birch, R., Kiss, J.E., D'Andrea, P., Cable, R.G., & Spencer, B.R. (2016). A randomized, blinded, placebo-controlled trial of education and iron supplementation for mitigation of iron deficiency in regular blood donors. Transfusion, 56(6 Pt 2), 1588–1597. https://doi.org/10.1111/trf.13469
Mast, A.E., Szabo, A., Stone, M., Cable, R.G., Spencer, B.R., Kiss, J.E., & NHLBI Recipient Epidemiology Donor Evaluation Study (REDS)-III (2020). The benefits of iron supplementation following blood donation vary with baseline iron status. American journal of hematology, 95(7), 784–791. https://doi.org/10.1002/ajh.25800
McDermid, J.M., & Lönnerdal, B. (2012). Iron. Advances in nutrition (Bethesda, Md.), 3(4), 532–533. https://doi.org/10.3945/an.112.002261
McKie, A.T., Marciani, P., Rolfs, A., Brennan, K., Wehr, K., Barrow, D., Miret, S., Bomford, A., Peters, T.J., Farzaneh, F., Hediger, M.A., Hentze, M.W., & Simpson, R.J. (2000). A novel duodenal iron-regulated transporter, IREG1, implicated in the basolateral transfer of iron to the circulation. Molecular cell, 5(2), 299–309. https://doi.org/10.1016/s1097-2765(00)80425-6
Mendoza, C., Viteri, F.E., Lönnerdal, B., Raboy, V., Young, K.A., & Brown, K.H. (2001). Absorption of iron from unmodified maize and genetically altered, low-phytate maize fortified with ferrous sulfate or sodium iron EDTA. The American journal of clinical nutrition, 73(1), 80–85. https://doi.org/10.1093/ajcn/73.1.80
Milman N. (1996). Serum ferritin in Danes: studies of iron status from infancy to old age, during blood donation and pregnancy. International journal of hematology, 63(2), 103–135. https://doi.org/10.1016/0925-5710(95)00426-2
Milman, N., & Kirchhoff, M. (1999). Relationship between serum ferritin and risk factors for ischaemic heart disease in 2235 Danes aged 30-60 years. Journal of internal medicine, 245(5), 423–433. https://doi.org/10.1046/j.1365-2796.1999.00465.x
Mittal, R., Marwaha, N., Basu, S., Mohan, H., & Ravi Kumar, A. (2006). Evaluation of iron stores in blood donors by serum ferritin. The Indian journal of medical research, 124(6), 641–646.
Mohammed, O., Dyab, N., Kheadr, E., & Dabour, N. (2021). Effectiveness of inulin-type on the iron bioavailability in anemic female rats fed bio-yogurt. RSC advances, 11(4), 1928–1938. https://doi.org/10.1039/d0ra08873k
Muckenthaler, M.U., Galy, B., & Hentze, M.W. (2008). Systemic iron homeostasis and the iron-responsive element/iron-regulatory protein (IRE/IRP) regulatory network. Annual review of nutrition, 28, 197–213. https://doi.org/10.1146/annurev.nutr.28.061807.155521
Murray-Kolb, L.E., Beard, J.L., Joseph, L.J., Davey, S.L., Evans, W.J., & Campbell, W.W. (2001). Resistance training affects iron status in older men and women. International journal of sport nutrition and exercise metabolism, 11(3), 287–298. https://doi.org/10.1123/ijsnem.11.3.287
Muzykantov V.R. (2010). Drug delivery by red blood cells: vascular carriers designed by mother nature. Expert opinion on drug delivery, 7(4), 403–427. https://doi.org/10.1517/17425241003610633
Nadarajan, V.S., & Eow, G.I. (2002). Anaemia and iron status among blood donors in a blood transfusion unit in Malaysia. The Malaysian journal of pathology, 24(2), 99–102.
Nadarajan, V., Sthaneshwar, P., & Eow, G.I. (2008). Use of red blood cell indices for the identification of iron deficiency among blood donors. Transfusion medicine (Oxford, England), 18(3), 184–189. https://doi.org/10.1111/j.1365-3148.2008.00862.x
Navas-Carretero, S., Pérez-Granados, A.M., Sarriá, B., Carbajal, A., Pedrosa, M.M., Roe, M.A., Fairweather-Tait, S.J., & Vaquero, M.P. (2008). Oily fish increases iron bioavailability of a phytate rich meal in young iron deficient women. Journal of the American College of Nutrition, 27(1), 96–101. https://doi.org/10.1080/07315724.2008.10719680
Ndiaye, N.F., Idohou-Dossou, N., Bürkli, S., Diouf, A., Loucoubar, C., Guiro, A.T., Zimmermann, M.B., Wade, S., & Moretti, D. (2020). Polyphenol-rich tea decreases iron absorption from fortified wheat bread in Senegalese mother-child pairs and bioavailability of ferrous fumarate is sharply lower in children. European journal of clinical nutrition, 74(8), 1221–1228. https://doi.org/10.1038/s41430-020-0601-z
Nemeth, E., Tuttle, M.S., Powelson, J., Vaughn, M.B., Donovan, A., Ward, D.M., Ganz, T., & Kaplan, J. (2004). Hepcidin regulates cellular iron efflux by binding to ferroportin and inducing its internalization. Science (New York, N.Y.), 306(5704), 2090–2093. https://doi.org/10.1126/science.1104742
Norashikin, J., Roshan, T.M., Rosline, H., Zaidah, A.W., Suhair, A.A., & Rapiaah, M. (2006). A study of serum ferritin levels among male blood donors in Hospital Universiti sains Malaysia. The Southeast Asian journal of tropical medicine and public health, 37(2), 370–373.
O’Flaherty, E.A.A., Tsermoula, P., O’Neill, E.E., & O’Brien, N.M. (2019). Co-Products of Beef Processing Enhance Non-Haem Iron Absorption in an in Vitro Digestion/Caco-2 Cell Model. International Journal of Food Science & Technology, 54(4), 1256–1264. https://doi.org/10.1111/ijfs.14049.
O'Brien, S.F., & Goldman, M. (2017). Understanding iron depletion and overload in blood donors. ISBT Science Series, 12(1), 11-18.
Ohgami, R.S., Campagna, D.R., McDonald, A., & Fleming, M.D. (2006). The Steap proteins are metalloreductases. Blood, 108(4), 1388–1394. https://doi.org/10.1182/blood-2006-02-003681
O'Meara, A., Infanti, L., Stebler, C., Ruesch, M., Sigle, J.P., Stern, M., & Buser, A. (2011). The value of routine ferritin measurement in blood donors. Transfusion, 51(10), 2183–2188. https://doi.org/10.1111/j.1537-2995.2011.03148.x
Otto, J.M., Montgomery, H.E., & Richards, T. (2013). Haemoglobin concentration and mass as determinants of exercise performance and of surgical outcome. Extreme physiology & medicine, 2(1), 33. https://doi.org/10.1186/2046-7648-2-33
Pachikian, B., Naslain, D., Benoit, N., Brebels, R., Van Asch, K., Compernolle, V., Vandekerckhove, P., & Deldicque, L. (2020). Iron supplementation limits the deleterious effects of repeated blood donation on endurance sport performance but not on iron status. Blood transfusion = Trasfusione del sangue, 18(5), 334–347. https://doi.org/10.2450/2020.0087-20
Pandey, K.B., & Rizvi, S.I. (2009). Plant polyphenols as dietary antioxidants in human health and disease. Oxidative medicine and cellular longevity, 2(5), 270–278. https://doi.org/10.4161/oxim.2.5.9498
Park, C.H., Valore, E.V., Waring, A.J., & Ganz, T. (2001). Hepcidin, a urinary antimicrobial peptide synthesized in the liver. The Journal of biological chemistry, 276(11), 7806–7810. https://doi.org/10.1074/jbc.M008922200
Perron, N.R., & Brumaghim, J.L. (2009). A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell biochemistry and biophysics, 53(2), 75–100. https://doi.org/10.1007/s12013-009-9043-x
Petry, N., Egli, I., Chassard, C., Lacroix, C., & Hurrell, R. (2012). Inulin modifies the bifidobacteria population, fecal lactate concentration, and fecal pH but does not influence iron absorption in women with low iron status. The American journal of clinical nutrition, 96(2), 325–331. https://doi.org/10.3945/ajcn.112.035717
Petry, N., Egli, I., Zeder, C., Walczyk, T., & Hurrell, R. (2010). Polyphenols and phytic acid contribute to the low iron bioavailability from common beans in young women. The Journal of nutrition, 140(11), 1977–1982. https://doi.org/10.3945/jn.110.125369
Pigeon, C., Ilyin, G., Courselaud, B., Leroyer, P., Turlin, B., Brissot, P., & Loréal, O. (2001). A new mouse liver-specific gene, encoding a protein homologous to human antimicrobial peptide hepcidin, is overexpressed during iron overload. The Journal of biological chemistry, 276(11), 7811–7819. https://doi.org/10.1074/jbc.M008923200
Piskin, E., Cianciosi, D., Gulec, S., Tomas, M., & Capanoglu, E. (2022). Iron Absorption: Factors, Limitations, and Improvement Methods. ACS omega, 7(24), 20441–20456. https://doi.org/10.1021/acsomega.2c01833
Pottgiesser, T., Specker, W., Umhau, M., Dickhuth, H. H., Roecker, K., & Schumacher, Y. O. (2008). Recovery of hemoglobin mass after blood donation. Transfusion, 48(7), 1390–1397. https://doi.org/10.1111/j.1537-2995.2008.01719.x
Punnonen, K., & Rajamäki, A. (1999). Evaluation of iron status of Finnish blood donors using serum transferrin receptor. Transfusion medicine (Oxford, England), 9(2), 131–134. https://doi.org/10.1046/j.1365-3148.1999.00191.x
Qiao, B., Sugianto, P., Fung, E., Del-Castillo-Rueda, A., Moran-Jimenez, M.J., Ganz, T., & Nemeth, E. (2012). Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell metabolism, 15(6), 918–924. https://doi.org/10.1016/j.cmet.2012.03.018
Qiu, A., Jansen, M., Sakaris, A., Min, S. H., Chattopadhyay, S., Tsai, E., Sandoval, C., Zhao, R., Akabas, M.H., & Goldman, I.D. (2006). Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 127(5), 917–928. https://doi.org/10.1016/j.cell.2006.09.041
Radtke, H., Mayer, B., Röcker, L., Salama, A., & Kiesewetter, H. (2004b). Iron supplementation and 2-unit red blood cell apheresis: a randomized, double-blind, placebo-controlled study. Transfusion, 44(10), 1463–1467. https://doi.org/10.1111/j.1537-2995.2004.04045.x
Radtke, H., Meyer, T., Kalus, U., Röcker, L., Salama, A., Kiesewetter, H., & Latza, R. (2005). Rapid identification of iron deficiency in blood donors with red cell indexes provided by Advia 120. Transfusion, 45(1), 5–10. https://doi.org/10.1111/j.1537-2995.2005.04205.x
Radtke, H., Tegtmeier, J., Röcker, L., Salama, A., & Kiesewetter, H. (2004a). Daily doses of 20 mg of elemental iron compensate for iron loss in regular blood donors: a randomized, double-blind, placebo-controlled study. Transfusion, 44(10), 1427–1432. https://doi.org/10.1111/j.1537-2995.2004.04074.x
Radtke, H., Tegtmeier, J., Röcker, L., Salama, A., & Kiesewetter, H. (2005). Compensating for iron loss in regular blood donors using ferrous gluconate and ascorbic acid. Transfusion, 45(7), 1236–1237. https://doi.org/10.1111/j.1537-2995.2005.00183.x
Rajagopal, A., Rao, A.U., Amigo, J., Tian, M., Upadhyay, S.K., Hall, C., Uhm, S., Mathew, M.K., Fleming, M.D., Paw, B.H., Krause, M., & Hamza, I. (2008). Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature, 453(7198), 1127–1131. https://doi.org/10.1038/nature06934
Reddy K.V., Shastry, S., Raturi, M., & Baliga B.P. (2020). Impact of Regular Whole-Blood Donation on Body Iron Stores. Transfusion medicine and hemotherapy: offizielles Organ der Deutschen Gesellschaft fur Transfusionsmedizin und Immunhamatologie, 47(1), 75–79. https://doi.org/10.1159/000499768
Rigas, A.S., Sørensen, C.J., Pedersen, O.B., Petersen, M.S., Thørner, L.W., Kotzé, S., Sørensen, E., Magnussen, K., Rostgaard, K., Erikstrup, C., & Ullum, H. (2014). Predictors of iron levels in 14,737 Danish blood donors: results from the Danish Blood Donor Study. Transfusion, 54(3 Pt 2), 789–796. https://doi.org/10.1111/trf.12518
Robb, A., & Wessling-Resnick, M. (2004). Regulation of transferrin receptor 2 protein levels by transferrin. Blood, 104(13), 4294–4299. https://doi.org/10.1182/blood-2004-06-2481
Roughead, Z.K., Zito, C.A., & Hunt, J.R. (2002). Initial uptake and absorption of nonheme iron and absorption of heme iron in humans are unaffected by the addition of calcium as cheese to a meal with high iron bioavailability. The American journal of clinical nutrition, 76(2), 419–425. https://doi.org/10.1093/ajcn/76.2.419
Roughead, Z.K., Zito, C. A., & Hunt, J.R. (2005). Inhibitory effects of dietary calcium on the initial uptake and subsequent retention of heme and nonheme iron in humans: comparisons using an intestinal lavage method. The American journal of clinical nutrition, 82(3), 589–597. https://doi.org/10.1093/ajcn.82.3.589
Rutzke, C.J., Glahn, R.P., Rutzke, M.A., Welch, R.M., Langhans, R.W., Albright, L.D., Combs, G.F., Jr, & Wheeler, R.M. (2004). Bioavailability of iron from spinach using an in vitro/human Caco-2 cell bioassay model. Habitation (Elmsford, N.Y.), 10(1), 7–14. https://doi.org/10.3727/154296604774808900
Sadowska, J., & Sacharczuk, O. (2011). Ocena wpływu sposobu zywienia na mozliwość oddania krwi przez krwiodawców wielokrotnych [The estimation of the influence of pattern of consumption on the possibility of blood donation by repeated blood donors]. Roczniki Panstwowego Zakladu Higieny, 62(2), 193–198.
Scarano, A., Laddomada, B., Blando, F., De Santis, S., Verna, G., Chieppa, M., & Santino, A. (2023). The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants (Basel, Switzerland), 12(3), 630. https://doi.org/10.3390/antiox12030630
Schade, A.L., & Caroline, L. (1946). An Iron-binding Component in Human Blood Plasma. Science (New York, N.Y.), 104(2702), 340–341. https://doi.org/10.1126/science.104.2702.340
Schumacher, Y.O., Schmid, A., Grathwohl, D., Bültermann, D., & Berg, A. (2002). Hematological indices and iron status in athletes of various sports and performances. Medicine and science in sports and exercise, 34(5), 869–875. https://doi.org/10.1097/00005768-200205000-00022
Sharp P.A. (2010). Intestinal iron absorption: regulation by dietary & systemic factors. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 80(4-5), 231–242. https://doi.org/10.1024/0300-9831/a000029
Shaw, G.C., Cope, J.J., Li, L., Corson, K., Hersey, C., Ackermann, G.E., Gwynn, B., Lambert, A.J., Wingert, R.A., Traver, D., Trede, N.S., Barut, B.A., Zhou, Y., Minet, E., Donovan, A., Brownlie, A., Balzan, R., Weiss, M.J., Peters, L.L., Kaplan, J., … Paw, B.H. (2006). Mitoferrin is essential for erythroid iron assimilation. Nature, 440(7080), 96–100. https://doi.org/10.1038/nature04512
Shayeghi, M., Latunde-Dada, G.O., Oakhill, J.S., Laftah, A.H., Takeuchi, K., Halliday, N., Khan, Y., Warley, A., McCann, F.E., Hider, R.C., Frazer, D.M., Anderson, G.J., Vulpe, C.D., Simpson, R.J., & McKie, A.T. (2005). Identification of an intestinal heme transporter. Cell, 122(5), 789–801. https://doi.org/10.1016/j.cell.2005.06.025
Silvestri, L., Pagani, A., Nai, A., De Domenico, I., Kaplan, J., & Camaschella, C. (2008). The serine protease matriptase-2 (TMPRSS6) inhibits hepcidin activation by cleaving membrane hemojuvelin. Cell metabolism, 8(6), 502–511. https://doi.org/10.1016/j.cmet.2008.09.012
Simon, T.L., Garry, P.J., & Hooper, E.M. (1981). Iron stores in blood donors. JAMA, 245(20), 2038–2043.
Skikne, B.S., Flowers, C.H., & Cook, J.D. (1990). Serum transferrin receptor: a quantitative measure of tissue iron deficiency. Blood, 75(9), 1870–1876.
Skolmowska, D., & Głąbska, D. (2019). Analysis of Heme and Non-Heme Iron Intake and Iron Dietary Sources in Adolescent Menstruating Females in a National Polish Sample. Nutrients, 11(5), 1049. https://doi.org/10.3390/nu11051049
Smirnoff N. (2018). Ascorbic acid metabolism and functions: A comparison of plants and mammals. Free radical biology & medicine, 122, 116–129. https://doi.org/10.1016/j.freeradbiomed.2018.03.033
Spencer B.R. (2020). Oral iron and blood donation: cui bono? Blood transfusion = Trasfusione del sangue, 18(5), 329–331. https://doi.org/10.2450/2020.0239-20
Spencer, B.R., & Mast, A.E. (2022). Iron status of blood donors. Current opinion in hematology, 29(6), 310–316. https://doi.org/10.1097/MOH.0000000000000733
Stern, M., O'Meara, A., Infanti, L., Sigle, J.P., & Buser, A. (2012). Prognostic value of red blood cell parameters and ferritin in predicting deferral due to low hemoglobin in whole blood donors. Annals of hematology, 91(5), 775–780. https://doi.org/10.1007/s00277-011-1371-4
Storcksdieck genannt Bonsmann, S., Walczyk, T., Renggli, S., & Hurrell, R.F. (2008). Oxalic acid does not influence nonhaem iron absorption in humans: a comparison of kale and spinach meals. European journal of clinical nutrition, 62(3), 336–341. https://doi.org/10.1038/sj.ejcn.1602721
Strain, J.J., & Cashman, K.D. (2009). Minerals and trace elements. Human nutrition: The Nutrition Society.
Suominen, P., Punnonen, K., Rajamäki, A., & Irjala, K. (1998). Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical iron deficits. Blood, 92(8), 2934–2939.
Swanson C.A. (2003). Iron intake and regulation: implications for iron deficiency and iron overload. Alcohol (Fayetteville, N.Y.), 30(2), 99–102. https://doi.org/10.1016/s0741-8329(03)00103-4
Teucher, B., Olivares, M., & Cori, H. (2004). Enhancers of iron absorption: ascorbic acid and other organic acids. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition, 74(6), 403–419. https://doi.org/10.1024/0300-9831.74.6.403
Theil E.C. (2003). Ferritin: at the crossroads of iron and oxygen metabolism. The Journal of nutrition, 133(5 Suppl 1), 1549S–53S. https://doi.org/10.1093/jn/133.5.1549S
Timmer, T.C., de Groot, R., Rijnhart, J.J.M., Lakerveld, J., Brug, J., Perenboom, C.W.M., Baart, M.A., Prinsze, F.J., Zalpuri, S., van der Schoot, E.C., de Kort, W.L.A.M., & van den Hurk, K. (2020). Dietary intake of heme iron is associated with ferritin and hemoglobin levels in Dutch blood donors: results from Donor InSight. Haematologica, 105(10), 2400–2406. https://doi.org/10.3324/haematol.2019.229450
Toxqui, L., Pérez-Granados, A.M., Blanco-Rojo, R., Wright, I., González-Vizcayno, C., & Vaquero, M.P. (2013). Effects of an iron or iron and vitamin D-fortified flavored skim milk on iron metabolism: a randomized controlled double-blind trial in iron-deficient women. Journal of the American College of Nutrition, 32(5), 312–320. https://doi.org/10.1080/07315724.2013.826116
Troesch, B., Jing, H., Laillou, A., & Fowler, A. (2013). Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods. Food and nutrition bulletin, 34(2 Suppl.), S90–S101. https://doi.org/10.1177/15648265130342S111
Turi, J.L., Wang, X., McKie, A.T., Nozik-Grayck, E., Mamo, L.B., Crissman, K., Piantadosi, C.A., & Ghio, A.J. (2006). Duodenal cytochrome b: a novel ferrireductase in airway epithelial cells. American journal of physiology. Lung cellular and molecular physiology, 291(2), L272–L280. https://doi.org/10.1152/ajplung.00342.2005
Van Campen, D.R., & Welch, R.M. (1980). Availability to rats of iron from spinach: Effects of oxalic acid. The Journal of nutrition, 110(8), 1618–1621. https://doi.org/10.1093/jn/110.8.1618
Vassallo R.R. (2021). Donor iron depletion in context. Transfusion, 61(1), 318–321. https://doi.org/10.1111/trf.16219
Verga Falzacappa, M.V., Vujic Spasic, M., Kessler, R., Stolte, J., Hentze, M.W., & Muckenthaler, M.U. (2007). STAT3 mediates hepatic hepcidin expression and its inflammatory stimulation. Blood, 109(1), 353–358. https://doi.org/10.1182/blood-2006-07-033969
Villaño, D., Vilaplana, C., Medina, S., Algaba-Chueca, F., Cejuela-Anta, R., Martínez-Sanz, J.M., Ferreres, F., & Gil-Izquierdo, A. (2016). Relationship between the Ingestion of a Polyphenol-Rich Drink, Hepcidin Hormone, and Long-Term Training. Molecules (Basel, Switzerland), 21(10), 1333. https://doi.org/10.3390/molecules21101333
Vuk, T., Bingulac-Popović, J., Očić, T., Mayer, L.J., Milošević, M., & Jukić, I. (2017). Combined cell index in assessing blood donor iron stores. Transfusion medicine (Oxford, England), 27(1), 16–24. https://doi.org/10.1111/tme.12370
Vulpe, C.D., Kuo, Y.M., Murphy, T.L., Cowley, L., Askwith, C., Libina, N., Gitschier, J., & Anderson, G.J. (1999). Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nature genetics, 21(2), 195–199. https://doi.org/10.1038/5979
Wadsworth G.R. (1955). Recovery from acute haemorrhage in normal men and women. The Journal of physiology, 129(3), 583–593. https://doi.org/10.1113/jphysiol.1955.sp005380
Walczyk, T., Muthayya, S., Wegmüller, R., Thankachan, P., Sierksma, A., Frenken, L.G., Thomas, T., Kurpad, A., & Hurrell, R.F. (2014). Inhibition of iron absorption by calcium is modest in an iron-fortified, casein- and whey-based drink in Indian children and is easily compensated for by addition of ascorbic acid. The Journal of nutrition, 144(11), 1703–1709. https://doi.org/10.3945/jn.114.193417
Wallace, D.F., Summerville, L., Crampton, E.M., Frazer, D.M., Anderson, G.J., & Subramaniam, V.N. (2009). Combined deletion of Hfe and transferrin receptor 2 in mice leads to marked dysregulation of hepcidin and iron overload. Hepatology (Baltimore, Md.), 50(6), 1992–2000. https://doi.org/10.1002/hep.23198
Wang, R.H., Li, C., Xu, X., Zheng, Y., Xiao, C., Zerfas, P., Cooperman, S., Eckhaus, M., Rouault, T., Mishra, L., & Deng, C.X. (2005). A role of SMAD4 in iron metabolism through the positive regulation of hepcidin expression. Cell metabolism, 2(6), 399–409. https://doi.org/10.1016/j.cmet.2005.10.010
Wang, X., Li, Y., Han, L., Li, J., Liu, C., & Sun, C. (2021). Role of Flavonoids in the Treatment of Iron Overload. Frontiers in cell and developmental biology, 9, 685364. https://doi.org/10.3389/fcell.2021.685364
Weinborn, V., Valenzuela, C., Olivares, M., Arredondo, M., Weill, R., & Pizarro, F. (2017). Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans. Food & function, 8(5), 1994–1999. https://doi.org/10.1039/c6fo01833e
Worwood M. (2002). Serum transferrin receptor assays and their application. Annals of clinical biochemistry, 39(Pt 3), 221–230. https://doi.org/10.1258/0004563021902152
Wrighting, D.M., & Andrews, N.C. (2006). Interleukin-6 induces hepcidin expression through STAT3. Blood, 108(9), 3204–3209. https://doi.org/10.1182/blood-2006-06-027631
Yiannikourides, A., & Latunde-Dada, G.O. (2019). A Short Review of Iron Metabolism and Pathophysiology of Iron Disorders. Medicines (Basel, Switzerland), 6(3), 85. https://doi.org/10.3390/medicines6030085
You, S., Ma, Y., Yan, B., Pei, W., Wu, Q., Ding, C., & Huang, C. (2022). The promotion mechanism of prebiotics for probiotics: A review. Frontiers in nutrition, 9, 1000517. https://doi.org/10.3389/fnut.2022.1000517
Zeger, G., Selogie, E., & Shulman, I.A. (2007). Blood Donation and Collection. Blood Banking and Transfusion Medicine, 157–182. https://doi.org/10.1016/B978-0-443-06981-9.50016-8
Zijp, I.M., Korver, O., & Tijburg, L.B. (2000). Effect of tea and other dietary factors on iron absorption. Critical reviews in food science and nutrition, 40(5), 371–398. https://doi.org/10.1080/10408690091189194
Zimmermann, M.B., & Hurrell, R.F. (2007). Nutritional iron deficiency. Lancet (London, England), 370(9586), 511–520. https://doi.org/10.1016/S0140-6736(07)61235-5
Downloads
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Авторське право (c) 2024 Малгожата Градюк, Галина Ткаченко, Наталія Кургалюк
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.