ANTIBACTERIAL PROPERTIES OF COMMERCIAL GERANIUM ESSENTIAL OIL AGAINST SOME GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA

Authors

DOI:

https://doi.org/10.58407/bht.2.23.4

Keywords:

geranium essential oil, antibacterial activity, Kirby-Bauer disc diffusion technique, Gram-positive bacteria, Gram-negative bacteria

Abstract

Purpose: The purpose of the study was to evaluate the antibacterial properties of commercial geranium essential oil (Etja, Elbląg, Poland) against some Gram-positive and Gram-negative bacteria. To this intent, the antimicrobial susceptibility test was used (the Kirby–Bauer disk diffusion test for measuring zone diameters of bacterial growth inhibition).

Methodology. Natural geranium essential oil (Etja, Elbląg, Poland) was used in the current study. The testing of the antibacterial activity of geranium essential oil was carried out in vitro by the Kirby-Bauer disc diffusion technique. In the current study, Gram-positive strains such as Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 51299™) (resistant to vancomycin; sensitive to teicoplanin), Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 29212™), Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213™), Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™), Staphylococcus aureus (NCTC 12493™), and Gram-negative strains such as Pseudomonas aeruginosa (Schroeter) Migula (ATCC® 27853™), Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™), and Escherichia coli (Migula) Castellani and Chalmers (ATCC® 35218™) strains were used for the assessment of antibacterial activity of geranium essential oil.

Scientific novelty. The highest diameters of the inhibition zone around the growth of Gram-negative strains were obtained for Escherichia coli (Migula) Castellani and Chalmers (ATCC® 25922™) and E. coli (Migula) Castellani and Chalmers (ATCC® 35218™) strains. Diameters of the inhibition zone were increased by 47.6% (p < 0.05) and 84.1% (p < 0.05) compared to the control samples, respectively. Gram-positive strains were more sensitive to the impact of commercial geranium essential oil. The highest diameters of the inhibition zone around the growth of Gram-positive strains were obtained for Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 29213™) and Staphylococcus aureus subsp. aureus Rosenbach (ATCC® 25923™). Diameters of the inhibition zone were increased by 95.1% (p < 0.05) and 67.7% (p < 0.05) compared to the control samples, respectively.

Conclusions. This study demonstrated that commercial geranium essential oil possesses potential antimicrobial properties against Gram-positive bacteria, such as Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 51299™) and Enterococcus faecalis (Andrewes and Horder) Schleifer and Kilpper-Balz (ATCC® 29212™), S. aureus subsp. aureus Rosenbach (ATCC® 29213™) and S. aureus subsp. aureus Rosenbach (ATCC® 25923™) strains. Pseudomonas aeruginosa strain was resistant to commercial geranium essential oil. This study showed that this essential oil could be a potential preparation as a source of natural antibacterial properties.

Downloads

Download data is not yet available.

References

Al-Jumaili, A., Mulvey, P., Kumar, A., Prasad, K., Bazaka, K., Warner, J., & Jacob, M. V. (2019). Eco-friendly nanocomposites derived from geranium oil and zinc oxide in one step approach. Scientific reports, 9(1), 5973. https://doi.org/10.1038/s41598-019-42211-z.

Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils – a review. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106.

Bassolé, I. H., & Juliani, H. R. (2012). Essential oils in combination and their antimicrobial properties. Molecules (Basel, Switzerland), 17(4), 3989–4006. https://doi.org/10.3390/molecules17043989.

Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American journal of clinical pathology, 45(4), 493–496.

Bhattamisra, S. K., Yean Yan, V. L., Koh Lee, C., Hui Kuean, C., Candasamy, M., Liew, Y. K., & Sahu, P. S. (2018). Protective activity of geraniol against acetic acid and Helicobacter pylori- induced gastric ulcers in rats. Journal of traditional and complementary medicine, 9(3), 206–214. https://doi.org/10.1016/j.jtcme.2018.05.001.

Bigos, M., Wasiela, M., Kalemba, D., & Sienkiewicz, M. (2012). Antimicrobial activity of geranium oil against clinical strains of Staphylococcus aureus. Molecules (Basel, Switzerland), 17(9), 10276–10291. https://doi.org/10.3390/molecules170910276.

Burt S. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. International journal of food microbiology, 94(3), 223–253. https://doi.org/10.1016/j.ijfoodmicro.2004.03.022.

Carmen, G., & Hancu, G. (2014). Antimicrobial and antifungal activity of Pelargonium roseum essential oils. Advanced pharmaceutical bulletin, 4(Suppl. 2), 511–514. https://doi.org/10.5681/apb.2014.075.

Carvalho, A. A., Andrade, L. N., de Sousa, É. B., & de Sousa, D. P. (2015). Antitumor phenylpropanoids found in essential oils. BioMed research international, 2015, 392674. https://doi.org/10.1155/2015/392674.

Cerceo, E., Deitelzweig, S. B., Sherman, B. M., & Amin, A. N. (2016). Multidrug-resistant Gram-negative bacterial infections in the hospital setting: overview, implications for clinical practice, and emerging treatment options. Microbial drug resistance (Larchmont, N.Y.), 22(5), 412–431. https://doi.org/10.1089/mdr.2015.0220.

Chen, W., Viljoen, A.M. (2010). Geraniol – a review of a commercially important fragrance material. South African Journal of Botany, 76, 643–651. https://doi.org/10.1016/j.sajb.2010.05.008.

Coronado-López, S., Caballero-García, S., Aguilar-Luis, M. A., Mazulis, F., & Del Valle-Mendoza, J. (2018). Antibacterial activity and cytotoxic effect of Pelargonium peltatum (Geranium) against Streptococcus mutans and Streptococcus sanguinis. International journal of dentistry, 2018, 2714350. https://doi.org/10.1155/2018/2714350.

Edwards-Jones, V., Buck, R., Shawcross, S. G., Dawson, M. M., & Dunn, K. (2004). The effect of essential oils on methicillin-resistant Staphylococcus aureus using a dressing model. Burns: journal of the International Society for Burn Injuries, 30(8), 772–777. https://doi.org/10.1016/j.burns.2004.06.006.

Feng, X., Feng, K., Zheng, Q., Tan, W., Zhong, W., Liao, C., Liu, Y., Li, S., & Hu, W. (2022). Preparation and characterization of geraniol nanoemulsions and its antibacterial activity. Frontiers in microbiology, 13, 1080300. https://doi.org/10.3389/fmicb.2022.1080300.

Ghannadi, A., Bagherinejad, M., Abedi, D., Jalali, M., Absalan, B., & Sadeghi, N. (2012). Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L. Iranian journal of microbiology, 4(4), 171–176.

Graça, V. C., Ferreira, I. C. F. R., & Santos, P. F. (2020). Bioactivity of the Geranium genus: a comprehensive review. Current pharmaceutical design, 26(16), 1838–1865. https://doi.org/10.2174/1381612826666200114110323.

Jara, M. C., Frediani, A. V., Zehetmeyer, F. K., Bruhn, F. R. P., Müller, M. R., Miller, R. G., & Nascente, P. D. S. (2021). Multidrug-resistant hospital bacteria: epidemiological factors and susceptibility profile. Microbial drug resistance (Larchmont, N.Y.), 27(3), 433–440. https://doi.org/10.1089/mdr.2019.0209.

Kalemba, D., & Kunicka, A. (2003). Antibacterial and antifungal properties of essential oils. Current medicinal chemistry, 10(10), 813–829. https://doi.org/10.2174/0929867033457719.

Knio, K. M., Usta, J., Dagher, S., Zournajian, H., & Kreydiyyeh, S. (2008). Larvicidal activity of essential oils extracted from commonly used herbs in Lebanon against the seaside mosquito, Ochlerotatus caspius. Bioresource technology, 99(4), 763–768. https://doi.org/10.1016/j.biortech.2007.01.026.

Li, Y. X., Erhunmwunsee, F., Liu, M., Yang, K., Zheng, W., & Tian, J. (2022). Antimicrobial mechanisms of spice essential oils and application in food industry. Food chemistry, 382, 132312. https://doi.org/10.1016/j.foodchem.2022.132312.

Liu, Q., Meng, X., Li, Y., Zhao, C. N., Tang, G. Y., & Li, H. B. (2017). Antibacterial and antifungal activities of spices. International journal of molecular sciences, 18(6), 1283. https://doi.org/10.3390/ijms18061283.

Lohani, A., Mishra, A. K., & Verma, A. (2019). Cosmeceutical potential of geranium and calendula essential oil: determination of antioxidant activity and in vitro sun protection factor. Journal of cosmetic dermatology, 18(2), 550–557. https://doi.org/10.1111/jocd.12789.

Lucca, L. G., Romão, P. R. T., Vignoli-Silva, M., da Veiga-Junior, V. F., & Koester, L. S. (2022). In vivo acute anti-inflammatory activity of essential oils: a review. Mini reviews in medicinal chemistry, 22(11), 1495–1515. https://doi.org/10.2174/1389557521666211123091541.

Luzhetskyy, A., Pelzer, S., & Bechthold, A. (2007). The future of natural products as a source of new antibiotics. Current opinion in investigational drugs (London, England: 2000), 8(8), 608–613.

Machado, T. Q., da Fonseca, A. C. C., Duarte, A. B. S., Robbs, B. K., & de Sousa, D. P. (2022). A narrative review of the antitumor activity of monoterpenes from essential oils: an update. BioMed research international, 2022, 6317201. https://doi.org/10.1155/2022/6317201.

Mączka, W., Wińska, K., & Grabarczyk, M. (2020). One hundred faces of geraniol. Molecules (Basel, Switzerland), 25(14), 3303. https://doi.org/10.3390/molecules25143303.

Nerio, L. S., Olivero-Verbel, J., & Stashenko, E. (2010). Repellent activity of essential oils: a review. Bioresource technology, 101(1), 372–378. https://doi.org/10.1016/j.biortech.2009.07.048.

Okoth, D.A., Chenia, H.Y., & Koorbanally, N.A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochemistry Letters, 6, 476–481. https://doi.org/10.1016/j.phytol.2013.06.003.

Pai, S., Enoch, D. A., & Aliyu, S. H. (2015). Bacteremia in children: epidemiology, clinical diagnosis and antibiotic treatment. Expert review of anti-infective therapy, 13(9), 1073–1088. https://doi.org/10.1586/14787210.2015.1063418.

Prabuseenivasan, S., Jayakumar, M., & Ignacimuthu, S. (2006). In vitro antibacterial activity of some plant essential oils. BMC complementary and alternative medicine, 6, 39. https://doi.org/10.1186/1472-6882-6-39.

Reichling J. (2022). Antiviral and virucidal properties of essential oils and isolated compounds – a scientific approach. Planta medica, 88(8), 587–603. https://doi.org/10.1055/a-1382-2898.

Rosato, A., Vitali, C., De Laurentis, N., Armenise, D., & Antonietta Milillo, M. (2007). Antibacterial effect of some essential oils administered alone or in combination with Norfloxacin. Phytomedicine: international journal of phytotherapy and phytopharmacology, 14(11), 727–732. https://doi.org/10.1016/j.phymed.2007.01.005.

Rossolini, G. M., Arena, F., Pecile, P., & Pollini, S. (2014). Update on the antibiotic resistance crisis. Current opinion in pharmacology, 18, 56–60. https://doi.org/10.1016/j.coph.2014.09.006.

Sakkas, H., & Papadopoulou, C. (2017). Antimicrobial activity of basil, oregano, and thyme essential oils. Journal of microbiology and biotechnology, 27(3), 429–438. https://doi.org/10.4014/jmb.1608.08024.

Sanja, C., Maksimović, M. (2012). Antioxidant activity of essential oil and aqueous extract of Pelargonium graveolens L'Her. Food Control, 23, 263-267. https://doi.org/10.1016/j.foodcont.2011.07.031.

Sarmento-Neto, J. F., do Nascimento, L. G., Felipe, C. F., & de Sousa, D. P. (2015). Analgesic potential of essential oils. Molecules (Basel, Switzerland), 21(1), E20. https://doi.org/10.3390/molecules21010020.

Sharopov, F.S., Zhang, H., Setzer, W.N. (2014). Composition of geranium (Pelargonium graveolens) essential oil from Tajikistan. American Journal of Essential Oils and Natural Products, 2, 13-16.

Sienkiewicz, M., Głowacka, A., Kowalczyk, E., Wiktorowska-Owczarek, A., Jóźwiak-Bębenista, M., & Łysakowska, M. (2014a). The biological activities of cinnamon, geranium and lavender essential oils. Molecules (Basel, Switzerland), 19(12), 20929–20940. https://doi.org/10.3390/molecules191220929.

Sienkiewicz, M., Poznańska-Kurowska, K., Kaszuba, A., & Kowalczyk, E. (2014b). The antibacterial activity of geranium oil against Gram-negative bacteria isolated from difficult-to-heal wounds. Burns: journal of the International Society for Burn Injuries, 40(5), 1046–1051. https://doi.org/10.1016/j.burns.2013.11.002.

Silva, D., Diniz-Neto, H., Cordeiro, L., Silva-Neta, M., Silva, S., Andrade-Júnior, F., Leite, M., Nóbrega, J., Morais, M., Souza, J., Rosa, L., Melo, T., Souza, H., Sousa, A., Rodrigues, G., Oliveira-Filho, A., & Lima, E. (2020). (R)-(+)-β-citronellol and (S)-(-)-β-citronellol in combination with amphotericin B against Candida spp. International journal of molecular sciences, 21(5), 1785. https://doi.org/10.3390/ijms21051785.

Solórzano-Santos, F., & Miranda-Novales, M. G. (2012). Essential oils from aromatic herbs as antimicrobial agents. Current opinion in biotechnology, 23(2), 136–141. https://doi.org/10.1016/j.copbio.2011.08.005.

Tkachenko, H., Opryshko, M., Gyrenko, O., Maryniuk, M., Buyun, L., & Kurhaluk, N. (2022). Antibacterial properties of commercial lavender essential oil against some Gram-positive and Gram-negative bacteria. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(2), 220–228. https://doi.org/10.15414/ainhlq.2022.0023.

Valdivieso-Ugarte, M., Gomez-Llorente, C., Plaza-Díaz, J., & Gil, Á. (2019). Antimicrobial, antioxidant, and immunomodulatory properties of essential oils: a systematic review. Nutrients, 11(11), 2786. https://doi.org/10.3390/nu11112786.

Vigan, M. (2010). Essential oils: renewal of interest and toxicity. European journal of dermatology: EJD, 20(6), 685–692. https://doi.org/10.1684/ejd.2010.1066.

Wińska, K., Mączka, W., Łyczko, J., Grabarczyk, M., Czubaszek, A., & Szumny, A. (2019). Essential oils as antimicrobial agents-myth or real alternative? Molecules (Basel, Switzerland), 24(11), 2130. https://doi.org/10.3390/molecules24112130.

Wright, G. D. (2014). Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian journal of microbiology, 60(3), 147–154. https://doi.org/10.1139/cjm-2014-0063.

Yue, L., Li, J., Chen, W., Liu, X., Jiang, Q., & Xia, W. (2017). Geraniol grafted chitosan oligosaccharide as a potential antibacterial agent. Carbohydrate polymers, 176, 356–364. https://doi.org/10.1016/j.carbpol.2017.07.043.

Zar, J.H. 1999. Biostatistical Analysis. 4th ed., Prentice Hall Inc., New Jersey.

Zhao, Q., Zhu, L., Wang, S., Gao, Y., & Jin, F. (2023). Molecular mechanism of the anti-inflammatory effects of plant essential oils: a systematic review. Journal of ethnopharmacology, 301, 115829. https://doi.org/10.1016/j.jep.2022.115829.

Downloads

Published

2023-11-18 — Updated on 2023-11-19

How to Cite

Tkaczenko, H., Opryshko, M., Maryniuk, M., Gyrenko, O., Buyun, L., Lukash, O., & Kurhaluk, N. (2023). ANTIBACTERIAL PROPERTIES OF COMMERCIAL GERANIUM ESSENTIAL OIL AGAINST SOME GRAM-POSITIVE AND GRAM-NEGATIVE BACTERIA. Biota. Human. Technology, (2). https://doi.org/10.58407/bht.2.23.4

Issue

Section

MICROBIOTA