PHYTOTHERAPEUTIC USE OF GINGER (ZINGIBER OFFICINALE)
DOI:
https://doi.org/10.58407/bht.1.25.6Keywords:
ginger, Zingiber officinale, herbal medicine, type 2 diabetes, obesity, cardiovascular disease, metabolic syndrome, non-alcoholic fatty liver disease and chronic kidney diseaseAbstract
For many people, ginger has become not only a popular spice in cooking, but also a valuable addition to a healthy lifestyle. Ginger contains many biologically active compounds that give it many beneficial properties. Recent studies confirm its potential in fighting various diseases and improving health. Its use can help maintain optimal body function and prevent the development of various diseases.
Purpose: The aim of this paper was to systematise scientific information on the therapeutic properties of ginger in the fight against various contemporary diseases, such as metabolic syndrome, diabetes, obesity, cardiovascular diseases, non-alcoholic fatty liver disease and chronic kidney disease. We analysed the collected literature to systematise information on the pharmacological properties of ginger, clinical trials on its efficacy in different conditions, mechanisms of action, methods of use and possible side effects.
Materials and methods. To prepare the review, we used scientific literature available in PubMed, Google Scholar, Scopus and other academic resources. The search terms were ”inger”, “Zingiber officinale”, “phytotherapy”, “pharmacological properties”, “clinical trials”, “antioxidants”, “anti-inflammatory properties”. The review included articles, reviews, clinical trials, meta-analyses and systematic reviews that investigated the phytotherapeutic use of ginger in various aspects of human health. Publications available in English and published in the last 25 years were included. The information obtained was systematised, described and analysed to produce a review material that reflects the current state of research on the phytotherapeutic use of ginger.
Scientific novelty. The article reviews the latest scientific research and clinical trials demonstrating the efficacy of ginger in the treatment of various diseases and health maintenance, including new discoveries about its mechanisms of action, clinical trials in humans and animals, and meta-analyses of previous studies. The article presents the mechanisms of action of ginger and its compounds, which explain the pharmacological activity of this plant and include the study of its interaction with cells and organs of the body, biochemical reactions and signalling pathways. Modern methods of using ginger in phytotherapy and in the practice of a healthy lifestyle are also considered, particularly in the treatment of metabolic syndrome (obesity or overweight, insulin resistance, hypertension, dyslipidaemia).
Conclusions. This article updates and expands the scientific knowledge on the phytotherapeutic use of ginger, opening new perspectives for its use and identifying its mechanisms of action. Ginger has significant potential as a natural medicine due to its biologically active compounds. Research shows that ginger has a variety of pharmacological properties, including antioxidant, anti-inflammatory, antitumour, antipyretic, antimicrobial and immunomodulatory effects. Research shows that ginger may be beneficial in the treatment and prevention of several diseases, including obesity, diabetes, cardiovascular disease, metabolic syndrome, non-alcoholic fatty liver disease and chronic kidney disease. Although scientific evidence supports the efficacy of ginger in many areas, further clinical trials are needed to confirm its efficacy, optimal dosage and potential side effects.
Downloads
References
Abdulrazaq, N. B., Cho, M. M., Win, N. N., Zaman, R., & Rahman, M. T. (2012). Beneficial effects of ginger (Zingiber officinale) on carbohydrate metabolism in streptozotocin-induced diabetic rats. The British journal of nutrition, 108(7), 1194–1201. https://doi.org/10.1017/S0007114511006635
Aeschbach, R., Löliger, J., Scott, B. C., Murcia, A., Butler, J., Halliwell, B., & Aruoma, O. I. (1994). Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 32(1), 31–36. https://doi.org/10.1016/0278-6915(84)90033-4
Ahn, EK., & Oh, J.S. (2012). Inhibitory effect of galanolactone isolated from Zingiber officinale roscoe extract on adipogenesis in 3T3-L1 cells. Journal of Applied Biological Chemistry, 55, 63–68. https://doi.org/10.1007/s13765-012-0011-6
Akinyemi, A. J., Ademiluyi, A. O., & Oboh, G. (2014). Inhibition of angiotensin-1-converting enzyme activity by two varieties of ginger (Zingiber officinale) in rats fed a high cholesterol diet. Journal of medicinal food, 17(3), 317–323. https://doi.org/10.1089/jmf.2012.0264
Akinyemi, A. J., Thomé, G. R., Morsch, V. M., Bottari, N. B., Baldissarelli, J., de Oliveira, L. S., Goularte, J. F., Belló-Klein, A., Oboh, G., & Schetinger, M. R. (2016). Dietary Supplementation of Ginger and Turmeric Rhizomes Modulates Platelets Ectonucleotidase and Adenosine Deaminase Activities in Normotensive and Hypertensive Rats. Phytotherapy research: PTR, 30(7), 1156–1163. https://doi.org/10.1002/ptr.5621
Al Hroob, A. M., Abukhalil, M. H., Alghonmeen, R. D., & Mahmoud, A. M. (2018). Ginger alleviates hyperglycemia-induced oxidative stress, inflammation and apoptosis and protects rats against diabetic nephropathy. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 106, 381–389. https://doi.org/10.1016/j.biopha.2018.06.148
Al-Amin, Z. M., Thomson, M., Al-Qattan, K. K., Peltonen-Shalaby, R., & Ali, M. (2006). Anti-diabetic and hypolipidaemic properties of ginger (Zingiber officinale) in streptozotocin-induced diabetic rats. The British journal of nutrition, 96(4), 660–666. https://doi.org/10.1079/bjn20061849
Alberti, K. G., Zimmet, P., Shaw, J., & IDF Epidemiology Task Force Consensus Group (2005). The metabolic syndrome – a new worldwide definition. Lancet (London, England), 366(9491), 1059–1062. https://doi.org/10.1016/S0140-6736(05)67402-8
Ali, B. H., Blunden, G., Tanira, M. O., & Nemmar, A. (2008). Some phytochemical, pharmacological and toxicological properties of ginger (Zingiber officinale Roscoe): a review of recent research. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 46(2), 409–420. https://doi.org/10.1016/j.fct.2007.09.085
ALmohaimeed, H. M., Mohammedsaleh, Z. M., Batawi, A. H., Balgoon, M. J., Ramadan, O. I., Baz, H. A., Al Jaouni, S., & Ayuob, N. N. (2021). Synergistic Anti-inflammatory and Neuroprotective Effects of Cinnamomum cassia and Zingiber officinale Alleviate Diabetes-Induced Hippocampal Changes in Male Albino Rats: Structural and Molecular Evidence. Frontiers in cell and developmental biology, 9, 727049. https://doi.org/10.3389/fcell.2021.727049
Arablou, T., Aryaeian, N., Valizadeh, M., Sharifi, F., Hosseini, A., & Djalali, M. (2014). The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. International journal of food sciences and nutrition, 65(4), 515–520. https://doi.org/10.3109/09637486.2014.880671
Atazadegan, M. A., Bagherniya, M., Askari, G., Tasbandi, A., & Sahebkar, A. (2021). The Effects of Medicinal Plants and Bioactive Natural Compounds on Homocysteine. Molecules (Basel, Switzerland), 26(11), 3081. https://doi.org/10.3390/molecules26113081
Azimi, P., Ghiasvand, R., Feizi, A., Hosseinzadeh, J., Bahreynian, M., Hariri, M., & Khosravi-Boroujeni, H. (2016). Effect of cinnamon, cardamom, saffron and ginger consumption on blood pressure and a marker of endothelial function in patients with type 2 diabetes mellitus: A randomized controlled clinical trial. Blood pressure, 25(3), 133–140. https://doi.org/10.3109/08037051.2015.1111020
Bahall, M. (2017). Use of complementary and alternative medicine by patients with end-stage renal disease on haemodialysis in Trinidad: A descriptive study. BMC complementary and alternative medicine, 17(1), 250. https://doi.org/10.1186/s12906-017-1755-7
Baliga, M. S., Haniadka, R., Pereira, M. M., D'Souza, J. J., Pallaty, P. L., Bhat, H. P., & Popuri, S. (2011). Update on the chemopreventive effects of ginger and its phytochemicals. Critical reviews in food science and nutrition, 51(6), 499–523. https://doi.org/10.1080/10408391003698669
Banihani, S.A. (2018). Ginger and Testosterone. Biomolecules, 8(4), 119. https://doi.org/10.3390/biom8040119
Baptista, B. G., Ribeiro, M., Cardozo, L. F., Leal, V. O., Regis, B., & Mafra, D. (2022). Nutritional benefits of ginger for patients with non-communicable diseases. Clinical nutrition ESPEN, 49, 1–16. https://doi.org/10.1016/j.clnesp.2022.04.017
Barsky, A. J., Saintfort, R., Rogers, M. P., & Borus, J. F. (2002). Nonspecific medication side effects and the nocebo phenomenon. JAMA, 287(5), 622–627. https://doi.org/10.1001/jama.287.5.622
Benjamin, E. J., Virani, S. S., Callaway, C. W., Chamberlain, A. M., Chang, A. R., Cheng, S., Chiuve, S. E., Cushman, M., Delling, F. N., Deo, R., de Ferranti, S. D., Ferguson, J. F., Fornage, M., Gillespie, C., Isasi, C. R., Jiménez, M. C., Jordan, L. C., Judd, S. E., Lackland, D., Lichtman, J. H., … American Heart Association Council on Epidemiology and Prevention Statistics Committee and Stroke Statistics Subcommittee (2018). Heart Disease and Stroke Statistics-2018 Update: A Report From the American Heart Association. Circulation, 137(12), e67–e492. https://doi.org/10.1161/CIR.0000000000000558
Bhandari, U., Kanojia, R., & Pillai, K. K. (2005). Effect of ethanolic extract of Zingiber officinale on dyslipidaemia in diabetic rats. Journal of ethnopharmacology, 97(2), 227–230. https://doi.org/10.1016/j.jep.2004.11.011
Bordia, A., Verma, S. K., & Srivastava, K. C. (1997). Effect of ginger (Zingiber officinale Rosc.) and fenugreek (Trigonella foenumgraecum L.) on blood lipids, blood sugar and platelet aggregation in patients with coronary artery disease. Prostaglandins, leukotrienes, and essential fatty acids, 56(5), 379–384. https://doi.org/10.1016/s0952-3278(97)90587-1
Brahma Naidu, P., Uddandrao, V. V., Ravindar Naik, R., Suresh, P., Meriga, B., Begum, M. S., Pandiyan, R., & Saravanan, G. (2016). Ameliorative potential of gingerol: Promising modulation of inflammatory factors and lipid marker enzymes expressions in HFD induced obesity in rats. Molecular and cellular endocrinology, 419, 139–147. https://doi.org/10.1016/j.mce.2015.10.007
Butt, M. S., & Sultan, M. T. (2011). Ginger and its health claims: molecular aspects. Critical reviews in food science and nutrition, 51(5), 383–393. https://doi.org/10.1080/10408391003624848
Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D., & Bäckhed, F. (2015). Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell metabolism, 22(4), 658–668. https://doi.org/10.1016/j.cmet.2015.07.026
Chakraborty, D., Mukherjee, A., Sikdar, S., Paul, A., Ghosh, S., & Khuda-Bukhsh, A. R. (2012). [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicology letters, 210(1), 34–43. https://doi.org/10.1016/j.toxlet.2012.01.002
Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K., Charlton, M., Sanyal, A. J., American Gastroenterological Association, American Association for the Study of Liver Diseases, & American College of Gastroenterology. (2012). The diagnosis and management of non-alcoholic fatty liver disease: practice guideline by the American Gastroenterological Association, American Association for the Study of Liver Diseases, and American College of Gastroenterology. Gastroenterology, 142(7), 1592–1609. https://doi.org/10.1053/j.gastro.2012.04.001
Coelho, M., Oliveira, T., & Fernandes, R. (2013). Biochemistry of adipose tissue: an endocrine organ. Archives of medical science: AMS, 9(2), 191–200. https://doi.org/10.5114/aoms.2013.33181
Cornier, M. A., Dabelea, D., Hernandez, T. L., Lindstrom, R. C., Steig, A. J., Stob, N. R., Van Pelt, R. E., Wang, H., & Eckel, R. H. (2008). The metabolic syndrome. Endocrine reviews, 29(7), 777–822. https://doi.org/10.1210/er.2008-0024
Cui, Y., Shi, Y., Bao, Y., Wang, S., Hua, Q., & Liu, Y. (2018). Zingerone attenuates diabetic nephropathy through inhibition of nicotinamide adenine dinucleotide phosphate oxidase 4. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 99, 422–430. https://doi.org/10.1016/j.biopha.2018.01.051
Deng, M., Yun, X., Ren, S., Qing, Z., & Luo, F. (2022). Plants of the Genus Zingiber: A Review of Their Ethnomedicine, Phytochemistry and Pharmacology. Molecules (Basel, Switzerland), 27(9), 2826. https://doi.org/10.3390/molecules27092826
Després, J. P., & Lemieux, I. (2006). Abdominal obesity and metabolic syndrome. Nature, 444(7121), 881–887. https://doi.org/10.1038/nature05488
Drucker, D. J., & Nauck, M. A. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet (London, England), 368(9548), 1696–1705. https://doi.org/10.1016/S0140-6736(06)69705-5
Duan, W., Liang, L., Huang, Y., Zhang, Y., Sun, B., & Li, L. (2021). Effect of Ginger on Chemical Composition, Physical and Sensory Characteristics of Chicken Soup. Foods (Basel, Switzerland), 10(7), 1456. https://doi.org/10.3390/foods10071456
Dugasani, S., Pichika, M. R., Nadarajah, V. D., Balijepalli, M. K., Tandra, S., & Korlakunta, J. N. (2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of ethnopharmacology, 127(2), 515–520. https://doi.org/10.1016/j.jep.2009.10.004
Ebrahimzadeh Attari, V., Asghari Jafarabadi, M., Zemestani, M., & Ostadrahimi, A. (2015). Effect of Zingiber officinale Supplementation on Obesity Management with Respect to the Uncoupling Protein 1 -3826A>G and ß3-adrenergic Receptor Trp64Arg Polymorphism. Phytotherapy research: PTR, 29(7), 1032–1039. https://doi.org/10.1002/ptr.5343
Ebrahimzadeh Attari, V., Ostadrahimi, A., Asghari Jafarabadi, M., Mehralizadeh, S., & Mahluji, S. (2016). Changes of serum adipocytokines and body weight following Zingiber officinale supplementation in obese women: a RCT. European journal of nutrition, 55(6), 2129–2136. https://doi.org/10.1007/s00394-015-1027-6
Elkhishin, I.A., & Awwad, I.A. (2009). A study of the cardiovascular toxic effects of Zingiber officinale (ginger) in adult male albino rats and its possible mechanisms of action. MJFCT, 17, 109–127
ElRokh, el-S. M., Yassin, N. A., El-Shenawy, S. M., & Ibrahim, B. M. (2010). Antihypercholesterolaemic effect of ginger rhizome (Zingiber officinale) in rats. Inflammopharmacology, 18(6), 309–315. https://doi.org/10.1007/s10787-010-0053-5
El-Seweidy, M. M., Asker, M. el-S., Eldahmy, S. I., Atteia, H. H., & Abdallah, M. A. (2015). Haemostatic risk factors in dyslipidemic rabbits: role of 10-dehydrogingerdione as a new hypolipemic agent. Journal of thrombosis and thrombolysis, 39(2), 196–202. https://doi.org/10.1007/s11239-014-1150-x
Fahmi, A., Hassanen, N., Abdur-Rahman, M., & Shams-Eldin, E. (2019). Phytochemicals, antioxidant activity and hepatoprotective effect of ginger (Zingiber officinale) on diethylnitrosamine toxicity in rats. Biomarkers: biochemical indicators of exposure, response, and susceptibility to chemicals, 24(5), 436–447. https://doi.org/10.1080/1354750X.2019.1606280
Fathi, R., Akbari, A., Nasiri, K., & Chardahcherik, M. (2021). Ginger (Zingiber officinale roscoe) extract could upregulate the renal expression of NRF2 and TNFα and prevents ethanol-induced toxicity in rat kidney. Avicenna journal of phytomedicine, 11(2), 134–145
Fuhrman, B., Rosenblat, M., Hayek, T., Coleman, R., & Aviram, M. (2000). Ginger extract consumption reduces plasma cholesterol, inhibits LDL oxidation and attenuates development of atherosclerosis in atherosclerotic, apolipoprotein E-deficient mice. The Journal of nutrition, 130(5), 1124–1131. https://doi.org/10.1093/jn/130.5.1124
Fumeron, F., Lamri, A., Abi Khalil, C., Jaziri, R., Porchay-Baldérelli, I., Lantieri, O., Vol, S., Balkau, B., Marre, M., & Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR) Study Group (2011). Dairy consumption and the incidence of hyperglycemia and the metabolic syndrome: results from a french prospective study, Data from the Epidemiological Study on the Insulin Resistance Syndrome (DESIR). Diabetes care, 34(4), 813–817. https://doi.org/10.2337/dc10-1772
Gao, H., Guan, T., Li, C., Zuo, G., Yamahara, J., Wang, J., & Li, Y. (2012). Treatment with ginger ameliorates fructose-induced Fatty liver and hypertriglyceridemia in rats: modulation of the hepatic carbohydrate response element-binding protein-mediated pathway. Evidence-based complementary and alternative medicine: eCAM, 2012, 570948. https://doi.org/10.1155/2012/570948
Gao, Y., Ozel, M. Z., Dugmore, T., Sulaeman, A., & Matharu, A. S. (2021). A biorefinery strategy for spent industrial ginger waste. Journal of hazardous materials, 401, 123400. https://doi.org/10.1016/j.jhazmat.2020.123400
Ghayur, M. N., & Gilani, A. H. (2005). Ginger lowers blood pressure through blockade of voltage-dependent calcium channels. Journal of cardiovascular pharmacology, 45(1), 74–80. https://doi.org/10.1097/00005344-200501000-00013
Giuliani, C., Napolitano, G., Bucci, I., Montani, V., & Monaco, F. (2001). Il fattore di trascrizione NF-kB: ruolo nella patogenesi delle malattie infiammatorie, autoimmuni, neoplastiche e implicazioni terapeutiche [Nf-kB transcription factor: role in the pathogenesis of inflammatory, autoimmune, and neoplastic diseases and therapy implications]. La Clinica terapeutica, 152(4), 249–253
Grassi, D., Desideri, G., & Ferri, C. (2010). Flavonoids: antioxidants against atherosclerosis. Nutrients, 2(8), 889–902. https://doi.org/10.3390/nu2080889
Gumbarewicz, E., Jarząb, A., Stepulak, A., & Kukula-Koch, W. (2022). Zingiber officinale Rosc. in the Treatment of Metabolic Syndrome Disorders – A Review of In Vivo Studies. International journal of molecular sciences, 23(24), 15545. https://doi.org/10.3390/ijms232415545
Hales, C. M., Carroll, M. D., Fryar, C. D., & Ogden, C. L. (2020). Prevalence of Obesity and Severe Obesity Among Adults: United States, 2017-2018. NCHS data brief, (360), 1–8
Halpern, A., Mancini, M. C., Magalhães, M. E., Fisberg, M., Radominski, R., Bertolami, M. C., Bertolami, A., de Melo, M. E., Zanella, M. T., Queiroz, M. S., & Nery, M. (2010). Metabolic syndrome, dyslipidemia, hypertension and type 2 diabetes in youth: from diagnosis to treatment. Diabetology & metabolic syndrome, 2, 55. https://doi.org/10.1186/1758-5996-2-55
Hamid, A., Ibrahim, F. W., Ming, T. H., Nasrom, M. N., Eusoff, N., Husain, K., & Abdul Latif, M. (2018). Zingiber zerumbet L. (Smith) extract alleviates the ethanol-induced brain damage via its antioxidant activity. BMC complementary and alternative medicine, 18(1), 101. https://doi.org/10.1186/s12906-018-2161-5
Hasani, H., Arab, A., Hadi, A., Pourmasoumi, M., Ghavami, A., & Miraghajani, M. (2019). Does ginger supplementation lower blood pressure? A systematic review and meta-analysis of clinical trials. Phytotherapy research: PTR, 33(6), 1639–1647. https://doi.org/10.1002/ptr.6362
Hashem, R. M., Rashed, L. A., Hassanin, K. M. A., Hetta, M. H., & Ahmed, A. O. (2017). Effect of 6-gingerol on AMPK- NF-κB axis in high fat diet fed rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 88, 293–301. https://doi.org/10.1016/j.biopha.2017.01.035
Huang, F. Y., Deng, T., Meng, L. X., & Ma, X. L. (2019). Dietary ginger as a traditional therapy for blood sugar control in patients with type 2 diabetes mellitus: A systematic review and meta-analysis. Medicine, 98(13), e15054. https://doi.org/10.1097/MD.0000000000015054
Imani, H., Tabibi, H., Najafi, I., Atabak, S., Hedayati, M., & Rahmani, L. (2015). Effects of ginger on serum glucose, advanced glycation end products, and inflammation in peritoneal dialysis patients. Nutrition (Burbank, Los Angeles County, Calif.), 31(5), 703–707. https://doi.org/10.1016/j.nut.2014.11.020
Ippoushi, K., Azuma, K., Ito, H., Horie, H., & Higashio, H. (2003). [6]-Gingerol inhibits nitric oxide synthesis in activated J774.1 mouse macrophages and prevents peroxynitrite-induced oxidation and nitration reactions. Life sciences, 73(26), 3427–3437. https://doi.org/10.1016/j.lfs.2003.06.022
Isa, Y., Miyakawa, Y., Yanagisawa, M., Goto, T., Kang, M. S., Kawada, T., Morimitsu, Y., Kubota, K., & Tsuda, T. (2008). 6-Shogaol and 6-gingerol, the pungent of ginger, inhibit TNF-alpha mediated downregulation of adiponectin expression via different mechanisms in 3T3-L1 adipocytes. Biochemical and biophysical research communications, 373(3), 429–434. https://doi.org/10.1016/j.bbrc.2008.06.046
Jafri, S.A., Abass, S., & Qasim, M. (2010). Hypoglycemic Effect of Ginger (Zingiber Officinale) in Alloxan Induced Diabetic Rats (Rattus Norvegicus). Pakistan Veterinary Journal, 31(2), 160–162
Jo, S. H., Cho, C. Y., Lee, J. Y., Ha, K. S., Kwon, Y. I., & Apostolidis, E. (2016). In vitro and in vivo reduction of post-prandial blood glucose levels by ethyl alcohol and water Zingiber mioga extracts through the inhibition of carbohydrate hydrolyzing enzymes. BMC complementary and alternative medicine, 16, 111. https://doi.org/10.1186/s12906-016-1090-4
Karimi, N., Dabidi Roshan, V., & Fathi Bayatiyani, Z. (2015). Individually and Combined Water-Based Exercise With Ginger Supplement, on Systemic Inflammation and Metabolic Syndrome Indices, Among the Obese Women With Breast Neoplasms. Iranian journal of cancer prevention, 8(6), e3856. https://doi.org/10.17795/ijcp-3856
Kazeem, M. I., Akanji, M. A., Yakubu, M. T., & Ashafa, A. O. (2013). Protective Effect of Free and Bound Polyphenol Extracts from Ginger (Zingiber officinale Roscoe) on the Hepatic Antioxidant and Some Carbohydrate Metabolizing Enzymes of Streptozotocin-Induced Diabetic Rats. Evidence-based complementary and alternative medicine: eCAM, 2013, 935486. https://doi.org/10.1155/2013/935486
Khandouzi, N., Shidfar, F., Rajab, A., Rahideh, T., Hosseini, P., & Mir Taheri, M. (2015). The effects of ginger on fasting blood sugar, hemoglobin a1c, apolipoprotein B, apolipoprotein a-I and malondialdehyde in type 2 diabetic patients. Iranian journal of pharmaceutical research: IJPR, 14(1), 131–140
Kim, H. G., Lim, S., Hong, J., Kim, A. J., & Oh, M. S. (2016). Effects of Myoga on Memory and Synaptic Plasticity by Regulating Nerve Growth Factor-Mediated Signaling. Phytotherapy research: PTR, 30(2), 208–213. https://doi.org/10.1002/ptr.5511
Kim, H.S., & Kang, S.A. (2017). Study of Quality Characteristics of Kimchi Added with Yangha (Zingiber mioga Rosc). J. Korea Acad.-Ind. Coop. Soc., 18, 400–407
Kim, S., Lee, M. S., Jung, S., Son, H. Y., Park, S., Kang, B., Kim, S. Y., Kim, I. H., Kim, C. T., & Kim, Y. (2018). Ginger Extract Ameliorates Obesity and Inflammation via Regulating MicroRNA-21/132 Expression and AMPK Activation in White Adipose Tissue. Nutrients, 10(11), 1567. https://doi.org/10.3390/nu10111567
Kiyama, R. (2020). Nutritional implications of ginger: chemistry, biological activities and signaling pathways. The Journal of nutritional biochemistry, 86, 108486. https://doi.org/10.1016/j.jnutbio.2020.108486
Kleinert, M., Clemmensen, C., Hofmann, S. M., Moore, M. C., Renner, S., Woods, S. C., Huypens, P., Beckers, J., de Angelis, M. H., Schürmann, A., Bakhti, M., Klingenspor, M., Heiman, M., Cherrington, A. D., Ristow, M., Lickert, H., Wolf, E., Havel, P. J., Müller, T. D., & Tschöp, M. H. (2018). Animal models of obesity and diabetes mellitus. Nature reviews. Endocrinology, 14(3), 140–162. https://doi.org/10.1038/nrendo.2017.161
Kota, N., Panpatil, V. V., Kaleb, R., Varanasi, B., & Polasa, K. (2012). Dose-dependent effect in the inhibition of oxidative stress and anticlastogenic potential of ginger in STZ induced diabetic rats. Food chemistry, 135(4), 2954–2959. https://doi.org/10.1016/j.foodchem.2012.06.116
Lai, Y. S., Lee, W. C., Lin, Y. E., Ho, C. T., Lu, K. H., Lin, S. H., Panyod, S., Chu, Y. L., & Sheen, L. Y. (2016). Ginger Essential Oil Ameliorates Hepatic Injury and Lipid Accumulation in High Fat Diet-Induced Nonalcoholic Fatty Liver Disease. Journal of agricultural and food chemistry, 64(10), 2062–2071. https://doi.org/10.1021/acs.jafc.5b06159
Laslett, L. J., Alagona, P., Jr, Clark, B. A., 3rd, Drozda, J. P., Jr, Saldivar, F., Wilson, S. R., Poe, C., & Hart, M. (2012). The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. Journal of the American College of Cardiology, 60(25 Suppl), S1–S49. https://doi.org/10.1016/j.jacc.2012.11.002
Lee, D. H., Ahn, J., Jang, Y. J., Ha, T. Y., & Jung, C. H. (2016). Zingiber mioga reduces weight gain, insulin resistance and hepatic gluconeogenesis in diet-induced obese mice. Experimental and therapeutic medicine, 12(1), 369–376. https://doi.org/10.3892/etm.2016.3331
Lee, H. Y., Park, S. H., Lee, M., Kim, H. J., Ryu, S. Y., Kim, N. D., Hwang, B. Y., Hong, J. T., Han, S. B., & Kim, Y. (2012). 1-Dehydro-[10]-gingerdione from ginger inhibits IKKβ activity for NF-κB activation and suppresses NF-κB-regulated expression of inflammatory genes. British journal of pharmacology, 167(1), 128–140. https://doi.org/10.1111/j.1476-5381.2012.01980.x
Lee, J. O., Kim, N., Lee, H. J., Moon, J. W., Lee, S. K., Kim, S. J., Kim, J. K., Park, S. H., & Kim, H. S. (2015). [6]-Gingerol Affects Glucose Metabolism by Dual Regulation via the AMPKα2-Mediated AS160-Rab5 Pathway and AMPK-Mediated Insulin Sensitizing Effects. Journal of cellular biochemistry, 116(7), 1401–1410. https://doi.org/10.1002/jcb.25100
Lee, T. Y., Lee, K. C., Chen, S. Y., & Chang, H. H. (2009). 6-Gingerol inhibits ROS and iNOS through the suppression of PKC-alpha and NF-kappaB pathways in lipopolysaccharide-stimulated mouse macrophages. Biochemical and biophysical research communications, 382(1), 134–139. https://doi.org/10.1016/j.bbrc.2009.02.160
Lei, L., Liu, Y., Wang, X., Jiao, R., Ma, K. Y., Li, Y. M., Wang, L., Man, S. W., Sang, S., Huang, Y., & Chen, Z. Y. (2014). Plasma cholesterol-lowering activity of gingerol- and shogaol-enriched extract is mediated by increasing sterol excretion. Journal of agricultural and food chemistry, 62(43), 10515–10521. https://doi.org/10.1021/jf5043344
Lemieux, I., & Després, J. P. (2020). Metabolic Syndrome: Past, Present and Future. Nutrients, 12(11), 3501. https://doi.org/10.3390/nu12113501
Li, C., & Zhou, L. (2015). Inhibitory effect 6-gingerol on adipogenesis through activation of the Wnt/β-catenin signaling pathway in 3T3-L1 adipocytes. Toxicology in vitro: an international journal published in association with BIBRA, 30(1 Pt B), 394–401. https://doi.org/10.1016/j.tiv.2015.09.023
Li, X. H., McGrath, K. C., Tran, V. H., Li, Y. M., Duke, C. C., Roufogalis, B. D., & Heather, A. K. (2013). Attenuation of Proinflammatory Responses by S-[6]-Gingerol via Inhibition of ROS/NF-Kappa B/COX2 Activation in HuH7 Cells. Evidence-based complementary and alternative medicine: eCAM, 2013, 146142. https://doi.org/10.1155/2013/146142
Li, Y., Tran, V. H., Duke, C. C., & Roufogalis, B. D. (2012a). Gingerols of Zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta medica, 78(14), 1549–1555. https://doi.org/10.1055/s-0032-1315041
Li, Y., Tran, V. H., Duke, C. C., & Roufogalis, B. D. (2012b). Preventive and Protective Properties of Zingiber officinale (Ginger) in Diabetes Mellitus, Diabetic Complications, and Associated Lipid and Other Metabolic Disorders: A Brief Review. Evidence-based complementary and alternative medicine: eCAM, 2012, 516870. https://doi.org/10.1155/2012/516870
Li, Y., Tran, V. H., Kota, B. P., Nammi, S., Duke, C. C., & Roufogalis, B. D. (2014). Preventative effect of Zingiber officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic & clinical pharmacology & toxicology, 115(2), 209–215. https://doi.org/10.1111/bcpt.12196
Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., Tokgözoğlu, L., & Lewis, E. F. (2019). Atherosclerosis. Nature reviews. Disease primers, 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z
Liu, G. S., Chan, E. C., Higuchi, M., Dusting, G. J., & Jiang, F. (2012). Redox mechanisms in regulation of adipocyte differentiation: beyond a general stress response. Cells, 1(4), 976–993. https://doi.org/10.3390/cells1040976
Lusis, A. J. (2000). Atherosclerosis. Nature, 407(6801), 233–241. https://doi.org/10.1038/35025203
Mahluji, S., Attari, V. E., Mobasseri, M., Payahoo, L., Ostadrahimi, A., & Golzari, S. E. (2013a). Effects of ginger (Zingiber officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. International journal of food sciences and nutrition, 64(6), 682–686. https://doi.org/10.3109/09637486.2013.775223
Mahluji, S., Ostadrahimi, A., Mobasseri, M., Ebrahimzade Attari, V., & Payahoo, L. (2013b). Anti-inflammatory effects of Zingiber officinale in type 2 diabetic patients. Advanced pharmaceutical bulletin, 3(2), 273–276. https://doi.org/10.5681/apb.2013.044
Mahmoud, M. F., Diaai, A. A., & Ahmed, F. (2012). Evaluation of the efficacy of ginger, Arabic gum, and Boswellia in acute and chronic renal failure. Renal failure, 34(1), 73–82. https://doi.org/10.3109/0886022X.2011.623563
Mahmoud, R. H., & Elnour, W. A. (2013). Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. European review for medical and pharmacological sciences, 17(1), 75–83
Mansour, M. S., Ni, Y. M., Roberts, A. L., Kelleman, M., Roychoudhury, A., & St-Onge, M. P. (2012). Ginger consumption enhances the thermic effect of food and promotes feelings of satiety without affecting metabolic and hormonal parameters in overweight men: a pilot study. Metabolism: clinical and experimental, 61(10), 1347–1352. https://doi.org/10.1016/j.metabol.2012.03.016
Mao, Q. Q., Xu, X. Y., Cao, S. Y., Gan, R. Y., Corke, H., Beta, T., & Li, H. B. (2019). Bioactive Compounds and Bioactivities of Ginger (Zingiber officinale Roscoe). Foods (Basel, Switzerland), 8(6), 185. https://doi.org/10.3390/foods8060185
Masuda, Y., Kikuzaki, H., Hisamoto, M., & Nakatani, N. (2004). Antioxidant properties of gingerol related compounds from ginger. BioFactors (Oxford, England), 21(1-4), 293–296. https://doi.org/10.1002/biof.552210157
Matsuda, A., Wang, Z., Takahashi, S., Tokuda, T., Miura, N., & Hasegawa, J. (2009). Upregulation of mRNA of retinoid binding protein and fatty acid binding protein by cholesterol enriched-diet and effect of ginger on lipid metabolism. Life sciences, 84(25-26), 903–907. https://doi.org/10.1016/j.lfs.2009.04.004
Mîinea, C. P., Sano, H., Kane, S., Sano, E., Fukuda, M., Peränen, J., Lane, W. S., & Lienhard, G. E. (2005). AS160, the Akt substrate regulating GLUT4 translocation, has a functional Rab GTPase-activating protein domain. The Biochemical journal, 391(Pt 1), 87–93. https://doi.org/10.1042/BJ20050887
Mikhail, N. (2009). The metabolic syndrome: insulin resistance. Current hypertension reports, 11(2), 156–158. https://doi.org/10.1007/s11906-009-0027-4
Misawa, K., Hashizume, K., Yamamoto, M., Minegishi, Y., Hase, T., & Shimotoyodome, A. (2015). Ginger extract prevents high-fat diet-induced obesity in mice via activation of the peroxisome proliferator-activated receptor δ pathway. The Journal of nutritional biochemistry, 26(10), 1058–1067. https://doi.org/10.1016/j.jnutbio.2015.04.014
Mozaffari-Khosravi, H., Talaei, B., Jalali, B. A., Najarzadeh, A., & Mozayan, M. R. (2014). The effect of ginger powder supplementation on insulin resistance and glycemic indices in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Complementary therapies in medicine, 22(1), 9–16. https://doi.org/10.1016/j.ctim.2013.12.017
Mukkavilli, R., Yang, C., Tanwar, R. S., Saxena, R., Gundala, S. R., Zhang, Y., Ghareeb, A., Floyd, S. D., Vangala, S., Kuo, W. W., Rida, P. C. G., & Aneja, R. (2018). Pharmacokinetic-pharmacodynamic correlations in the development of ginger extract as an anticancer agent. Scientific reports, 8(1), 3056. https://doi.org/10.1038/s41598-018-21125-2
Murugesan, S., Venkateswaran, M.R., Jayabal, S., & Periyasamy, S. (2020). Evaluation of the antioxidant and anti-arthritic potential of Zingiber officinale Rosc. by in vitro and in silico analysis. South African Journal of Botany, 130, 45–53. https://doi.org/10.1016/j.sajb.2019.12.019
Mustafa, I., Chin, N. L., Fakurazi, S., & Palanisamy, A. (2019). Comparison of Phytochemicals, Antioxidant and Anti-Inflammatory Properties of Sun-, Oven- and Freeze-Dried Ginger Extracts. Foods (Basel, Switzerland), 8(10), 456. https://doi.org/10.3390/foods8100456
Nammi, S., Sreemantula, S., & Roufogalis, B. D. (2009). Protective effects of ethanolic extract of Zingiber officinale rhizome on the development of metabolic syndrome in high-fat diet-fed rats. Basic & clinical pharmacology & toxicology, 104(5), 366–373. https://doi.org/10.1111/j.1742-7843.2008.00362.x
Okamoto, M., Irii, H., Tahara, Y., Ishii, H., Hirao, A., Udagawa, H., Hiramoto, M., Yasuda, K., Takanishi, A., Shibata, S., & Shimizu, I. (2011). Synthesis of a new [6]-gingerol analogue and its protective effect with respect to the development of metabolic syndrome in mice fed a high-fat diet. Journal of medicinal chemistry, 54(18), 6295–6304. https://doi.org/10.1021/jm200662c
Ozkur, M., Benlier, N., Takan, I., Vasileiou, C., Georgakilas, A. G., Pavlopoulou, A., Cetin, Z., & Saygili, E. I. (2022). Ginger for Healthy Ageing: A Systematic Review on Current Evidence of Its Antioxidant, Anti-Inflammatory, and Anticancer Properties. Oxidative medicine and cellular longevity, 2022, 4748447. https://doi.org/10.1155/2022/4748447
Parham, S., Kharazi, A. Z., Bakhsheshi-Rad, H. R., Nur, H., Ismail, A. F., Sharif, S., RamaKrishna, S., & Berto, F. (2020). Antioxidant, Antimicrobial and Antiviral Properties of Herbal Materials. Antioxidants (Basel, Switzerland), 9(12), 1309. https://doi.org/10.3390/antiox9121309
Perreault, M., Erbe, D. V., & Tobin, J. F. (2008). PPARdelta Agonism for the Treatment of Obesity and Associated Disorders: Challenges and Opportunities. PPAR research, 2008, 125387. https://doi.org/10.1155/2008/125387
Pulbutr, P., Thunchomnang, K., Lawa, K., Mangkhalathon, A., & Saenubol, P. (2011). Lipolytic effects of Zingerone in adipocytes isolated from normal diet-fed rats and high fat diet-fed rats. International Journal of Pharmacology, 7, 629-634
Rahimlou, M., Yari, Z., Hekmatdoost, A., Alavian, S. M., & Keshavarz, S. A. (2016). Ginger Supplementation in Nonalcoholic Fatty Liver Disease: A Randomized, Double-Blind, Placebo-Controlled Pilot Study. Hepatitis monthly, 16(1), e34897. https://doi.org/10.5812/hepatmon.34897
Rameshrad, M., Razavi, B. M., Lalau, J. D., De Broe, M. E., & Hosseinzadeh, H. (2020). An overview of glucagon-like peptide-1 receptor agonists for the treatment of metabolic syndrome: A drug repositioning. Iranian journal of basic medical sciences, 23(5), 556–568. https://doi.org/10.22038/ijbms.2020.41638.9832
Rani, M. P., Krishna, M. S., Padmakumari, K. P., Raghu, K. G., & Sundaresan, A. (2012). Zingiber officinale extract exhibits antidiabetic potential via modulating glucose uptake, protein glycation and inhibiting adipocyte differentiation: an in vitro study. Journal of the science of food and agriculture, 92(9), 1948–1955. https://doi.org/10.1002/jsfa.5567
Rani, M. P., Padmakumari, K. P., Sankarikutty, B., Cherian, O. L., Nisha, V. M., & Raghu, K. G. (2011). Inhibitory potential of ginger extracts against enzymes linked to type 2 diabetes, inflammation and induced oxidative stress. International journal of food sciences and nutrition, 62(2), 106–110. https://doi.org/10.3109/09637486.2010.515565
Razali, N., Dewa, A., Asmawi, M. Z., Mohamed, N., & Manshor, N. M. (2020). Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive rats. Journal of integrative medicine, 18(1), 46–58. https://doi.org/10.1016/j.joim.2019.12.003
Rehman, M. U., Rashid, S. M., Rasool, S., Shakeel, S., Ahmad, B., Ahmad, S. B., Madkhali, H., Ganaie, M. A., Majid, S., & Bhat, S. A. (2019). Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) ameliorates renal function via controlling oxidative burst and inflammation in experimental diabetic nephropathy. Archives of physiology and biochemistry, 125(3), 201–209. https://doi.org/10.1080/13813455.2018.1448422
Roudsari, N. M., Lashgari, N. A., Momtaz, S., Roufogalis, B., Abdolghaffari, A. H., & Sahebkar, A. (2021). Ginger: A complementary approach for management of cardiovascular diseases. BioFactors (Oxford, England), 47(6), 933–951. https://doi.org/10.1002/biof.1777
Ruiz-Ortega, M., Rayego-Mateos, S., Lamas, S., Ortiz, A., & Rodrigues-Diez, R. R. (2020). Targeting the progression of chronic kidney disease. Nature reviews. Nephrology, 16(5), 269–288. https://doi.org/10.1038/s41581-019-0248-y
Ryan, J. L., & Morrow, G. R. (2010). Ginger. Oncology nurse edition, 24(2), 46–49
Salaramoli, S., Mehri, S., Yarmohammadi, F., Hashemy, S. I., & Hosseinzadeh, H. (2022). The effects of ginger and its constituents in the prevention of metabolic syndrome: A review. Iranian journal of basic medical sciences, 25(6), 664–674. https://doi.org/10.22038/IJBMS.2022.59627.13231
Samad, M. B., Mohsin, M. N. A. B., Razu, B. A., Hossain, M. T., Mahzabeen, S., Unnoor, N., Muna, I. A., Akhter, F., Kabir, A. U., & Hannan, J. M. A. (2017). [6]-Gingerol, from Zingiber officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC complementary and alternative medicine, 17(1), 395. https://doi.org/10.1186/s12906-017-1903-0
Saravanan, G., Ponmurugan, P., Deepa, M. A., & Senthilkumar, B. (2014). Anti-obesity action of gingerol: effect on lipid profile, insulin, leptin, amylase and lipase in male obese rats induced by a high-fat diet. Journal of the science of food and agriculture, 94(14), 2972–2977. https://doi.org/10.1002/jsfa.6642
Schillaci, G., Pirro, M., Vaudo, G., Gemelli, F., Marchesi, S., Porcellati, C., & Mannarino, E. (2004). Prognostic value of the metabolic syndrome in essential hypertension. Journal of the American College of Cardiology, 43(10), 1817–1822. https://doi.org/10.1016/j.jacc.2003.12.049
Sekiya, K., Ohtani, A., & Kusano, S. (2004). Enhancement of insulin sensitivity in adipocytes by ginger. BioFactors (Oxford, England), 22(1-4), 153–156. https://doi.org/10.1002/biof.5520220130
Semwal, R. B., Semwal, D. K., Combrinck, S., & Viljoen, A. M. (2015). Gingerols and shogaols: Important nutraceutical principles from ginger. Phytochemistry, 117, 554–568. https://doi.org/10.1016/j.phytochem.2015.07.012
Shin, D. S., & Eom, Y. B. (2019). Zerumbone inhibits Candida albicans biofilm formation and hyphal growth. Canadian journal of microbiology, 65(10), 713–721. https://doi.org/10.1139/cjm-2019-0155
Shin, N. R., Shin, I. S., Jeon, C. M., Hong, J. M., Kwon, O. K., Kim, H. S., Oh, S. R., Hahn, K. W., & Ahn, K. S. (2015). Zingiber mioga (Thunb.) Roscoe attenuates allergic asthma induced by ovalbumin challenge. Molecular medicine reports, 12(3), 4538–4545. https://doi.org/10.3892/mmr.2015.3914
Son, M. J., Miura, Y., & Yagasaki, K. (2015). Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology, 67(4), 641–652. https://doi.org/10.1007/s10616-014-9730-3
Srinivasan, K. (2017). Ginger rhizomes (Zingiber officinale): a spice with multiple health beneficial potentials. PharmaNutrition, 5(1), 18-28. https://doi.org/10.1016/j.phanu.2017.01.001
Sugimoto, K., Takeuchi, H., Nakagawa, K., & Matsuoka, Y. (2018). Hyperthermic Effect of Ginger (Zingiber officinale) Extract-Containing Beverage on Peripheral Skin Surface Temperature in Women. Evidence-based complementary and alternative medicine: eCAM, 2018, 3207623. https://doi.org/10.1155/2018/3207623
Suk, S., Kwon, G. T., Lee, E., Jang, W. J., Yang, H., Kim, J. H., Thimmegowda, N. R., Chung, M. Y., Kwon, J. Y., Yang, S., Kim, J. K., Park, J. H. Y., & Lee, K. W. (2017). Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Molecular nutrition & food research, 61(10), 10.1002/mnfr.201700139. https://doi.org/10.1002/mnfr.201700139
Suk, S., Seo, S.G., Yu, J.G., Yang, H., Jeong, E., Jang, Y.J., Yaghmoor, S.S., Ahmed, Y., Yousef, J.M., Abualnaja, K.O., Al-Malki, A.L., Kumosani, T.A., Lee, C.Y., Lee, H.J., & Lee, K.W. (2016). A bioactive constituent of ginger, 6-shogaol, prevents adipogenesis and stimulates lipolysis in 3T3-L1 adipocytes. Journal of Food Biochemistry, 40(1), 84–90. https://doi.org/10.1111/jfbc.12191
Sun, F.J., Li, Z.L., Qian, S.H., & Pu, S.B. (2015). Research Advances on the Zingiberis Rhizoma. Chin. Wild Plant Resour. 34, 34–37. https://doi.org/10.3969/j.issn.1006-9690.2015.03.009
Tabibi, H., Imani, H., Atabak, S., Najafi, I., Hedayati, M., & Rahmani, L. (2016). Effects of Ginger on Serum Lipids and Lipoproteins in Peritoneal Dialysis Patients: A Randomized Controlled Trial. Peritoneal dialysis international: journal of the International Society for Peritoneal Dialysis, 36(2), 140–145. https://doi.org/10.3747/pdi.2015.00006
Tan, J. W., Israf, D. A., & Tham, C. L. (2018). Major Bioactive Compounds in Essential Oils Extracted From the Rhizomes of Zingiber zerumbet (L) Smith: A Mini-Review on the Anti-allergic and Immunomodulatory Properties. Frontiers in pharmacology, 9, 652. https://doi.org/10.3389/fphar.2018.00652
Tripathi, S., Maier, K. G., Bruch, D., & Kittur, D. S. (2007). Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. The Journal of surgical research, 138(2), 209–213. https://doi.org/10.1016/j.jss.2006.07.051
Tung, B. T., Thu, D. K., Thu, N. T. K., & Hai, N. T. (2017). Antioxidant and acetylcholinesterase inhibitory activities of ginger root (Zingiber officinale Roscoe) extract. Journal of complementary & integrative medicine, 14(4), /j/jcim.2017.14.issue-4/jcim-2016-0116/jcim-2016-0116.xml. https://doi.org/10.1515/jcim-2016-0116
Tzeng, T. F., & Liu, I. M. (2013). 6-gingerol prevents adipogenesis and the accumulation of cytoplasmic lipid droplets in 3T3-L1 cells. Phytomedicine: international journal of phytotherapy and phytopharmacology, 20(6), 481–487. https://doi.org/10.1016/j.phymed.2012.12.006
Tzeng, T. F., Liou, S. S., Chang, C. J., & Liu, I. M. (2015a). [6]-gingerol dampens hepatic steatosis and inflammation in experimental nonalcoholic steatohepatitis. Phytomedicine: international journal of phytotherapy and phytopharmacology, 22(4), 452–461. https://doi.org/10.1016/j.phymed.2015.01.015
Tzeng, T. F., Liou, S. S., Chang, C. J., & Liu, I. M. (2015b). 6-gingerol protects against nutritional steatohepatitis by regulating key genes related to inflammation and lipid metabolism. Nutrients, 7(2), 999–1020. https://doi.org/10.3390/nu7020999
Venkateswaran, M., Jayabal, S., Hemaiswarya, S., Murugesan, S., Enkateswara, S., Doble, M., & Periyasamy, S. (2021). Polyphenol-rich Indian ginger cultivars ameliorate GLUT4 activity in C2C12 cells, inhibit diabetes-related enzymes and LPS-induced inflammation: An in vitro study. Journal of food biochemistry, 45(2), e13600. https://doi.org/10.1111/jfbc.13600
Wang, D., Uhrin, P., Mocan, A., Waltenberger, B., Breuss, J. M., Tewari, D., Mihaly-Bison, J., Huminiecki, Ł., Starzyński, R. R., Tzvetkov, N. T., Horbańczuk, J., & Atanasov, A. G. (2018). Vascular smooth muscle cell proliferation as a therapeutic target. Part 1: molecular targets and pathways. Biotechnology advances, 36(6), 1586–1607. https://doi.org/10.1016/j.biotechadv.2018.04.006
Wang, D., Yang, Y., Lei, Y., Tzvetkov, N. T., Liu, X., Yeung, A. W. K., Xu, S., & Atanasov, A. G. (2019). Targeting Foam Cell Formation in Atherosclerosis: Therapeutic Potential of Natural Products. Pharmacological reviews, 71(4), 596–670. https://doi.org/10.1124/pr.118.017178
Wang, J., Gao, H., Ke, D., Zuo, G., Yang, Y., Yamahara, J., & Li, Y. (2013). Improvement of liquid fructose-induced adipose tissue insulin resistance by ginger treatment in rats is associated with suppression of adipose macrophage-related proinflammatory cytokines. Evidence-based complementary and alternative medicine: eCAM, 2013, 590376. https://doi.org/10.1155/2013/590376
Wang, J., Ke, W., Bao, R., Hu, X., & Chen, F. (2017). Beneficial effects of ginger Zingiber officinale Roscoe on obesity and metabolic syndrome: a review. Annals of the New York Academy of Sciences, 1398(1), 83–98. https://doi.org/10.1111/nyas.13375
Wang, J., Wang, P., Li, D., Hu, X., & Chen, F. (2020). Beneficial effects of ginger on prevention of obesity through modulation of gut microbiota in mice. European journal of nutrition, 59(2), 699–718. https://doi.org/10.1007/s00394-019-01938-1
Wang, Y. K., Hong, Y. J., Yao, Y. H., Huang, X. M., Liu, X. B., Zhang, C. Y., Zhang, L., & Xu, X. L. (2013). 6-Shogaol Protects against Oxidized LDL-Induced Endothelial Injruries by Inhibiting Oxidized LDL-Evoked LOX-1 Signaling. Evidence-based complementary and alternative medicine: eCAM, 2013, 503521. https://doi.org/10.1155/2013/503521
Wang, Y., Yu, H., Zhang, X., Feng, Q., Guo, X., Li, S., Li, R., Chu, D., & Ma, Y. (2017). Evaluation of daily ginger consumption for the prevention of chronic diseases in adults: A cross-sectional study. Nutrition (Burbank, Los Angeles County, Calif.), 36, 79–84. https://doi.org/10.1016/j.nut.2016.05.009
Webster, A. C., Nagler, E. V., Morton, R. L., & Masson, P. (2017). Chronic Kidney Disease. Lancet (London, England), 389(10075), 1238–1252. https://doi.org/10.1016/S0140-6736(16)32064-5
Wen, J., Zhang, L., Wang, J., Wang, J., Wang, L., Wang, R., Li, R., Liu, H., Wei, S., Li, H., Zou, W., & Zhao, Y. (2020). Therapeutic effects of higenamine combined with [6]-gingerol on chronic heart failure induced by doxorubicin via ameliorating mitochondrial function. Journal of cellular and molecular medicine, 24(7), 4036–4050. https://doi.org/10.1111/jcmm.15041
Wu, H. C., Horng, C. T., Tsai, S. C., Lee, Y. L., Hsu, S. C., Tsai, Y. J., Tsai, F. J., Chiang, J. H., Kuo, D. H., & Yang, J. S. (2018). Relaxant and vasoprotective effects of ginger extracts on porcine coronary arteries. International journal of molecular medicine, 41(4), 2420–2428. https://doi.org/10.3892/ijmm.2018.3380
Wu, Q.G., & Liao, J.P. (1995). Anatomy and Histochemistry of the Seeds of Zingiber boehm. Acta Botanica Boreali-Occidentalia Sinica, 15, 32–39. https://doi.org/10.3321/j.issn:1000-4025.1995.01.007
Xiang, J.M., Xu, L.J., Xiao, W., & Xiao, P.G. (2017). Research Progress in Zingiber officinale. Chinese Pharmaceutical Journal, 52, 353–357. https://doi.org/10.11669/cpj.2017.05.004
Xu, T., Tao, M., Li, R., Xu, X., Pan, S., & Wu, T. (2022). Longevity-promoting properties of ginger extract in Caenorhabditis elegans via the insulin/IGF-1 signaling pathway. Food & function, 13(19), 9893–9903. https://doi.org/10.1039/d2fo01602h
Yang, X., Li, Y., Li, Y., Ren, X., Zhang, X., Hu, D., Gao, Y., Xing, Y., & Shang, H. (2017). Oxidative Stress-Mediated Atherosclerosis: Mechanisms and Therapies. Frontiers in physiology, 8, 600. https://doi.org/10.3389/fphys.2017.00600
Yob, N. J., Jofrry, S. M., Affandi, M. M., Teh, L. K., Salleh, M. Z., & Zakaria, Z. A. (2011). Zingiber zerumbet (L.) Smith: A Review of Its Ethnomedicinal, Chemical, and Pharmacological Uses. Evidence-based complementary and alternative medicine: eCAM, 2011, 543216. https://doi.org/10.1155/2011/543216
Zhang, M., Zhao, R., Wang, D., Wang, L., Zhang, Q., Wei, S., Lu, F., Peng, W., & Wu, C. (2021). Ginger (Zingiber officinale Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytotherapy research: PTR, 35(2), 711–742. https://doi.org/10.1002/ptr.6858
Zick, S. M., Djuric, Z., Ruffin, M. T., Litzinger, A. J., Normolle, D. P., Alrawi, S., Feng, M. R., & Brenner, D. E. (2008). Pharmacokinetics of 6-gingerol, 8-gingerol, 10-gingerol, and 6-shogaol and conjugate metabolites in healthy human subjects. Cancer epidemiology, biomarkers & prevention: a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology, 17(8), 1930–1936. https://doi.org/10.1158/1055-9965.EPI-07-2934
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Галина Ткаченко, Тетяна Тюпова, Валентина Мовчан , Олександр Лукаш, Наталія Кургалюк

This work is licensed under a Creative Commons Attribution 4.0 International License.