THE INFLUENCE OF AGE, PHYSICAL ACTIVITY, SMOKING AND THE PRESENCE OF MYOCARDIAL INFARCTION AND THYROID DISEASES IN THE FAMILY ON THE LEVEL OF ALDEHYDIC AND KETONIC DERIVATIVES OF OXIDATIVE MODIFICATION OF PROTEINS IN THE BLOOD OF WOMEN AND MEN WITH MYOCARDIAL INFARCTS AND HYPOTHYROIDISM
DOI:
https://doi.org/10.58407/bht.1.24.11Keywords:
aldehydic and ketonic derivatives of oxidatively modified proteins, hypothyroidism, myocardial infarction, females, males, physical activity, smokingAbstract
The importance of thyroid hormones in maintaining homeostasis of the cardiovascular system can be inferred from clinical and experimental data showing that even subtle changes in thyroid hormone concentrations - such as those observed in subclinical hypothyroidism or hyperthyroidism and low triiodothyronine syndrome - adversely affect the cardiovascular system. Some potential mechanisms linking the two conditions are dyslipidemia, endothelial dysfunction, changes in blood pressure, and the direct effects of thyroid hormones on the myocardium.
Purpose: analysis of changes in the concentration of markers of oxidative stress, e.g. oxidation of protein amino acid residues [concentration of aldehydic and ketonic derivatives of oxidatively modified proteins (OMP)] in the blood of individuals with hypothyroidism and/or myocardial infarcts, living in central Pomeranian region, depending on age, physical activity, smoking and the presence of myocardial infarcts and thyroid diseases in the family.
Methodology. The level of oxidative stress markers was assessed among 225 individuals, i.e. 132 males (58.67%) and 93 females (41.33%) aged 35-71 years residing in central Pomeranian region. In the obtained blood, an assessment of levels of aldehydic and ketonic derivatives of oxidatively modified protein analyses was carried out.
Scientific novelty. According to our research, the level of aldehydic derivatives of oxidative modification of proteins was significantly higher in the elderly (more than 55 years old), and the level of ketonic derivatives was higher in younger individuals (less than 55 years old) with myocardial infarction and with both myocardial infarction and hypothyroidism. This proves the intensification of oxidative stress in both presented diseases, both among the elderly and younger individuals. The highest level of aldehydic and ketonic derivatives of oxidative modification of proteins was noted among individuals with myocardial infarctions and hypothyroidism with low physical activity and among non-smokers who suffer from hypothyroidism and additionally suffered myocardial infarctions, which may indicate an increase in oxidative stress at these diseases, regardless of physical activity and smoking. The highest level of aldehydic derivatives was noted in the group of individuals with myocardial infarction and hypothyroidism with myocardial infarction in family history, which may indicate an increase in oxidative stress in both diseases, especially in this studied group. The highest level of oxidative modification of proteins was noted among individuals with myocardial infarction and hypothyroidism, individuals with thyroid diseases in their family history, as well as those with no thyroid diseases in their family history. This proves the intensification of oxidative stress in both presented diseases, regardless of the factor of thyroid diseases in the family history.
Conclusions. In the course of myocardial infarction, the level of aldehydic derivatives of oxidatively modified proteins is affected by gender, while the level of ketonic derivatives of oxidatively modified proteins is affected by the presence of a myocardial infarction in the family history. The level of aldehydic derivatives of oxidative modification of proteins in individuals with hypothyroidism is influenced by low physical activity and age over 55, while the level of ketonic derivatives of oxidative modification of proteins is affected by the gender of the individuals. In the course of myocardial infarction and hypothyroidism, the level of aldehydic derivatives of protein oxidative modification is affected by age and physical activity, while the level of ketonic derivatives of protein oxidative modification is affected by the age of individuals.
Downloads
References
Adraskela, K., Veisaki, E., Koutsilieris, M., & Philippou, A. (2017). Physical exercise positively influences breast cancer evolution. Clinical breast cancer, 17(6), 408–417. https://doi.org/10.1016/ j.clbc.2017.05.003
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annual review of plant biology, 55, 373–399. https://doi.org/10.1146/annurev.arplant. 55.031903.141701
Asvold, B. O., Bjøro, T., Nilsen, T. I., & Vatten, L. J. (2007). Tobacco smoking and thyroid function: a population-based study. Archives of internal medicine, 167(13), 1428–1432. https://doi.org/ 10.1001/archinte.167.13.1428
Austad, S. N., & Bartke, A. (2015). Sex differences in longevity and in responses to anti-aging interventions: a mini-review. Gerontology, 62(1), 40–46. https://doi.org/10.1159/000381472
Barreiro Arcos, M. L. (2022). Role of thyroid hormones-induced oxidative stress on cardiovascular physiology. Biochimica et biophysica acta. General subjects, 1866(12), 130239. https://doi.org/ 10.1016/j.bbagen.2022.130239
Beyer, C., Plank, F., Friedrich, G., Wildauer, M., & Feuchtner, G. (2017). Effects of hyperthyroidism on coronary artery disease: a computed tomography angiography study. The Canadian journal of cardiology, 33(10), 1327–1334. https://doi.org/10.1016/j.cjca.2017.07.002
Bloomer, R. J., & Fisher-Wellman, K. (2009). The role of exercise in minimizing postprandial oxidative stress in cigarette smokers. Nicotine & tobacco research: official journal of the Society for Research on Nicotine and Tobacco, 11(1), 3–11. https://doi.org/10.1093/ntr/ntn005
Brčić, L., Gračan, S., Barić, A., Gunjača, I., Torlak Lovrić, V., Kolčić, I., Zemunik, T., Polašek, O., Barbalić, M., Punda, A., & Boraska Perica, V. (2017). Association of established thyroid-stimulating hormone and free thyroxine genetic variants with hashimoto’s thyroiditis. Immunological investigations, 46(6), 625–638. https://doi.org/10.1080/08820139.2017.1337785
Buico, A., Cassino, C., Ravera, M., Betta, P. G., & Osella, D. (2009). Oxidative stress and total antioxidant capacity in human plasma. Redox report: communications in free radical research, 14(3), 125–131. https://doi.org/10.1179/135100009X392557
Burek, C. L., & Rose, N. R. (2008). Autoimmune thyroiditis and ROS. Autoimmunity reviews, 7(7), 530–537. https://doi.org/10.1016/j.autrev.2008.04.006
Carlé, A., Bülow Pedersen, I., Knudsen, N., Perrild, H., Ovesen, L., Banke Rasmussen, L., Jørgensen, T., & Laurberg, P. (2012). Smoking cessation is followed by a sharp but transient rise in the incidence of overt autoimmune hypothyroidism – a population-based, case-control study. Clinical endocrinology, 77(5), 764–772. https://doi.org/10.1111/j.1365-2265.2012.04455.x
Carracedo, J., Ramírez-Carracedo, R., Martínez de Toda, I., Vida, C., Alique, M., De la Fuente, M., & Ramírez-Chamond, R. (2018). Protein carbamylation: a marker reflecting increased age-related cell oxidation. International journal of molecular sciences, 19(5), 1495. https://doi.org/10.3390/ ijms19051495
Da Costa, L. A., Badawi, A., & El-Sohemy, A. (2012). Nutrigenetics and modulation of oxidative stress. Annals of nutrition & metabolism, 60 Suppl. 3, 27–36. https://doi.org/10.1159/000337311
D'Autréaux, B., & Toledano, M. B. (2007). ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nature reviews. Molecular cell biology, 8(10), 813–824. https://doi.org/10.1038/nrm2256
Debmalya, S., Saumitra, R., & Singh, M. H. (2022). Interplay between cardiovascular and thyroid dysfunctions: a review of clinical implications and management strategies. Endocrine regulations, 56(4), 311–328. https://doi.org/10.2478/enr-2022-0033
Delitala, A. P. (2017). Subclinical hyperthyroidism and the cardiovascular disease. Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 49(10), 723–731. https://doi.org/10.1055/s-0043-117893
Delitala, A. P., Scuteri, A., Maioli, M., Mangatia, P., Vilardi, L., & Erre, G. L. (2019). Subclinical hypothyroidism and cardiovascular risk factors. Minerva medica, 110(6), 530–545. https://doi.org/10.23736/S0026-4806.19.06292-X
Diamanti-Kandarakis, E., Dattilo, M., Macut, D., Duntas, L., Gonos, E. S., Goulis, D. G., Gantenbein, C. K., Kapetanou, M., Koukkou, E., Lambrinoudaki, I., Michalaki, M., Eftekhari-Nader, S., Pasquali, R., Peppa, M., Tzanela, M., Vassilatou, E., Vryonidou, A., & COMBO ENDO TEAM: 2016 (2017). Mechanisms in endocrinology: aging and anti-aging: a Combo-Endocrinology overview. European journal of endocrinology, 176(6), R283–R308. https://doi.org/10.1530/EJE-16-1061
Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., Porotov, I. G. (1995). Oxidative modification of human serum proteins. A method of determining it. Voprosy Meditsinskoĭ Khimii, 41, 24–26. (in Russian)
Дубинина Е.Е., Бурмистров С.О., Ходов Д.А., Поротов И.Г. Окислительная модификация белков сыворотки крови человека, метод ее определения. Вопросы медицинской химии, 1995. Вып. 41, № 1. С. 24–26.
Ďuračková, Z. (2010). Some current insights into oxidative stress. Physiological research, 59(4), 459–469. https://doi.org/10.33549/physiolres.931844
Elfawy, H. A., & Das, B. (2019). Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: etiologies and therapeutic strategies. Life sciences, 218, 165–184. https://doi.org/10.1016/j.lfs.2018.12.029
Elnakish, M. T., Ahmed, A. A., Mohler, P. J., & Janssen, P. M. (2015). Role of oxidative stress in thyroid hormone-induced cardiomyocyte hypertrophy and associated cardiac dysfunction: an undisclosed story. Oxidative medicine and cellular longevity, 2015, 854265. https://doi.org/10.1155/2015/ 854265
Ferrari, S. M., Fallahi, P., Antonelli, A., & Benvenga, S. (2017). Environmental issues in thyroid diseases. Frontiers in endocrinology, 8, 50. https://doi.org/10.3389/fendo.2017.00050
Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation research, 122(6), 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
Gerdes, A. M., & Iervasi, G. (2010). Thyroid replacement therapy and heart failure. Circulation, 122(4), 385–393. https://doi.org/10.1161/CIRCULATIONAHA.109.917922
Grais, I. M., & Sowers, J. R. (2014). Thyroid and the heart. The American journal of medicine, 127(8), 691–698. https://doi.org/10.1016/j.amjmed.2014.03.009
Guthold, R., Ono, T., Strong, K. L., Chatterji, S., & Morabia, A. (2008). Worldwide variability in physical inactivity a 51-country survey. American journal of preventive medicine, 34(6), 486–494. https://doi.org/10.1016/j.amepre.2008.02.013
Hulbert A. J. (2000). Thyroid hormones and their effects: a new perspective. Biological reviews of the Cambridge Philosophical Society, 75(4), 519–631. https://doi.org/10.1017/s146479310000556x
Jabbar, A., Pingitore, A., Pearce, S. H., Zaman, A., Iervasi, G., & Razvi, S. (2017). Thyroid hormones and cardiovascular disease. Nature reviews. Cardiology, 14(1), 39–55. https://doi.org/10.1038/ nrcardio.2016.174
Jansen, E., & Ruskovska, T. (2015). Serum biomarkers of (anti)oxidant status for epidemiological studies. International journal of molecular sciences, 16(11), 27378–27390. https://doi.org/10.3390/ ijms161126032
Kamceva, G., Arsova-Sarafinovska, Z., Ruskovska, T., Zdravkovska, M., Kamceva-Panova, L., & Stikova, E. (2016). Cigarette smoking and oxidative stress in patients with coronary artery disease. Open access Macedonian journal of medical sciences, 4(4), 636–640. https://doi.org/10.3889/oamjms. 2016.117
Klein, I., & Ojamaa, K. (2001). Thyroid hormone and the cardiovascular system. The New England journal of medicine, 344(7), 501–509. https://doi.org/10.1056/NEJM200102153440707
Köhrle J. (2018). Thyroid hormones and derivatives: endogenous thyroid hormones and their targets. Methods in molecular biology (Clifton, N.J.), 1801, 85–104. https://doi.org/10.1007/978-1-4939-7902-8_9
Kushi, L. H., Doyle, C., McCullough, M., Rock, C. L., Demark-Wahnefried, W., Bandera, E. V., Gapstur, S., Patel, A. V., Andrews, K., Gansler, T., & American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee (2012). American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: reducing the risk of cancer with healthy food choices and physical activity. CA: a cancer journal for clinicians, 62(1), 30–67. https://doi.org/10.3322/ caac.20140
Lam, Y. T. (2015). Critical roles of reactive oxygen species in age-related impairment in ischemia-induced neovascularization by regulating stem and progenitor cell function. Oxidative medicine and cellular longevity, 2015, 7095901. https://doi.org/10.1155/2016/7095901
Lennicke, C., & Cochemé, H. M. (2021). Redox metabolism: ROS as specific molecular regulators of cell signaling and function. Molecular cell, 81(18), 3691–3707. https://doi.org/10.1016/j.molcel. 2021.08.018
Levine, R. L., Garland, D., Oliver, C. N., Amic, A., Climent, I., Lenz, A.G., Ahn, B. W., Shaltiel, S., Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymolology, 186, 464–478.
Li, R., Jia, Z., & Trush, M. A. (2016). Defining ROS in biology and medicine. Reactive oxygen species (Apex, N.C.), 1(1), 9–21. https://doi.org/10.20455/ros.2016.803
Liguori, I., Russo, G., Curcio, F., Bulli, G., Aran, L., Della-Morte, D., Gargiulo, G., Testa, G., Cacciatore, F., Bonaduce, D., & Abete, P. (2018). Oxidative stress, aging, and diseases. Clinical interventions in aging, 13, 757–772. https://doi.org/10.2147/CIA.S158513
Límanová, Z., & Jiskra, J. (2016). Thyroid hormones and cardiovascular system. Vnitrni lekarstvi, 62(9 Suppl. 3), 92–98. (in Polish)
Lowsky, D. J., Olshansky, S. J., Bhattacharya, J., & Goldman, D. P. (2014). Heterogeneity in healthy aging. The journals of gerontology. Series A, Biological sciences and medical sciences, 69(6), 640–649. https://doi.org/10.1093/gerona/glt162
Mancini, A., Raimondo, S., Di Segni, C., Persano, M., Gadotti, G., Silvestrini, A., Festa, R., Tiano, L., Pontecorvi, A., & Meucci, E. (2013). Thyroid hormones and antioxidant systems: focus on oxidative stress in cardiovascular and pulmonary diseases. International journal of molecular sciences, 14(12), 23893–23909. https://doi.org/10.3390/ijms141223893
Manolis, A. A., Manolis, T. A., Melita, H., & Manolis, A. S. (2020). Subclinical thyroid dysfunction and cardiovascular consequences: An alarming wake-up call? Trends in cardiovascular medicine, 30(2), 57–69. https://doi.org/10.1016/j.tcm.2019.02.011
Marcocci, C., Leo, M., & Altea, M. A. (2012). Oxidative stress in graves’ disease. European thyroid journal, 1(2), 80–87. https://doi.org/10.1159/000337976
Martinez, F. (2016). Thyroid hormones and heart failure. Heart failure reviews, 21(4), 361–364. https://doi.org/10.1007/s10741-016-9556-5
Medici, M., Visser, W. E., Visser, T. J., & Peeters, R. P. (2015). Genetic determination of the hypothalamic-pituitary-thyroid axis: where do we stand? Endocrine reviews, 36(2), 214–244. https://doi.org/10.1210/er.2014-1081
Mehran, L., Amouzgar, A., Delshad, H., & Azizi, F. (2012). The association of cigarette smoking with serum TSH concentration and thyroperoxidase antibody. Experimental and clinical endocrinology & diabetes: official journal, German Society of Endocrinology [and] German Diabetes Association, 120(2), 80–83. https://doi.org/10.1055/s-0031-1285910
Meinhold, C. L., Ron, E., Schonfeld, S. J., Alexander, B. H., Freedman, D. M., Linet, M. S., & Berrington de González, A. (2010). Nonradiation risk factors for thyroid cancer in the US Radiologic Technologists Study. American journal of epidemiology, 171(2), 242–252. https://doi.org/10.1093/aje/kwp354
Merz, A. A., & Cheng, S. (2016). Sex differences in cardiovascular ageing. Heart (British Cardiac Society), 102(11), 825–831. https://doi.org/10.1136/heartjnl-2015-308769
Metsios, G. S., Flouris, A. D., Angioi, M., & Koutedakis, Y. (2010). Passive smoking and the development of cardiovascular disease in children: a systematic review. Cardiology research and practice, 2011, 587650. https://doi.org/10.4061/2011/587650
Min, K., Smuder, A. J., Kwon, O. S., Kavazis, A. N., Szeto, H. H., & Powers, S. K. (2011). Mitochondrial-targeted antioxidants protect skeletal muscle against immobilization-induced muscle atrophy. Journal of applied physiology (Bethesda, Md.: 1985), 111(5), 1459–1466. https://doi.org/10.1152/ japplphysiol.00591.2011
Miri, R., Saadati, H., Ardi, P., & Firuzi, O. (2012). Alterations in oxidative stress biomarkers associated with mild hyperlipidemia and smoking. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 50(3-4), 920–926. https://doi.org/ 10.1016/j.fct.2011.12.031
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P., & Malik, A. B. (2014). Reactive oxygen species in inflammation and tissue injury. Antioxidants & redox signaling, 20(7), 1126–1167. https://doi.org/ 10.1089/ars.2012.5149
Mittler, R. (2017). ROS are good. Trends in plant science, 22(1), 11–19. https://doi.org/10.1016/ j.tplants.2016.08.002
Münzel, T., Camici, G. G., Maack, C., Bonetti, N. R., Fuster, V., & Kovacic, J. C. (2017). Impact of oxidative stress on the heart and vasculature: Part 2 of a 3-Part series. Journal of the American College of Cardiology, 70(2), 212–229. https://doi.org/10.1016/j.jacc.2017.05.035
Ohye, H., & Sugawara, M. (2010). Dual oxidase, hydrogen peroxide and thyroid diseases. Experimental biology and medicine (Maywood, N.J.), 235(4), 424–433. https://doi.org/10.1258/ebm.2009.009241
Ostan, R., Monti, D., Gueresi, P., Bussolotto, M., Franceschi, C., & Baggio, G. (2016). Gender, aging and longevity in humans: an update of an intriguing/neglected scenario paving the way to a gender-specific medicine. Clinical science (London, England: 1979), 130(19), 1711–1725. https://doi.org/ 10.1042/CS20160004
Panicker, V. (2011). Genetics of thyroid function and disease. The Clinical biochemist. Reviews, 32(4), 165–175.
Paschou, S. A., Bletsa, E., Stampouloglou, P. K., Tsigkou, V., Valatsou, A., Stefanaki, K., Kazakou, P., Spartalis, M., Spartalis, E., Oikonomou, E., & Siasos, G. (2022). Thyroid disorders and cardiovascular manifestations: an update. Endocrine, 75(3), 672–683. https://doi.org/10.1007/s12020-022-02982-4
Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., Altavilla, D., & Bitto, A. (2017). Oxidative stress: harms and benefits for human health. Oxidative medicine and cellular longevity, 2017, 8416763. https://doi.org/10.1155/2017/8416763
Radak, Z., Zhao, Z., Koltai, E., Ohno, H., & Atalay, M. (2013). Oxygen consumption and usage during physical exercise: the balance between oxidative stress and ROS-dependent adaptive signaling. Antioxidants & redox signaling, 18(10), 1208–1246. https://doi.org/10.1089/ars.2011.4498
Rahal, A., Kumar, A., Singh, V., Yadav, B., Tiwari, R., Chakraborty, S., & Dhama, K. (2014). Oxidative stress, prooxidants, and antioxidants: the interplay. BioMed research international, 2014, 761264. https://doi.org/10.1155/2014/761264
Sawicka-Gutaj, N., Gutaj, P., Sowiński, J., Wender-Ożegowska, E., Czarnywojtek, A., Brązert, J., & Ruchała, M. (2014). Influence of cigarette smoking on thyroid gland – an update. Endokrynologia Polska, 65(1), 54–62. https://doi.org/10.5603/EP.2014.0008
Siti, H. N., Kamisah, Y., & Kamsiah, J. (2015). The role of oxidative stress, antioxidants and vascular inflammation in cardiovascular disease (a review). Vascular pharmacology, 71, 40–56. https:// doi.org/10.1016/j.vph.2015.03.005
Smith, T. J. (2010). Pathogenesis of Graves’ orbitopathy: a 2010 update. Journal of endocrinological investigation, 33(6), 414–421. https://doi.org/10.1007/BF03346614
Szanto, I., Pusztaszeri, M., & Mavromati, M. (2019). H2O2 metabolism in normal thyroid cells and in thyroid tumorigenesis: focus on NADPH oxidases. Antioxidants (Basel, Switzerland), 8(5), 126. https://doi.org/10.3390/antiox8050126
Tauler, P., Ferrer, M. D., Romaguera, D., Sureda, A., Aguilo, A., Tur, J., & Pons, A. (2008). Antioxidant response and oxidative damage induced by a swimming session: influence of gender. Journal of sports sciences, 26(12), 1303–1311. https://doi.org/10.1080/02640410801974992
Testa, G., Cacciatore, F., Galizia, G., Della-Morte, D., Mazzella, F., Langellotto, A., Russo, S., Gargiulo, G., De Santis, D., Ferrara, N., Rengo, F., & Abete, P. (2010). Waist circumference but not body mass index predicts long-term mortality in elderly subjects with chronic heart failure. Journal of the American Geriatrics Society, 58(8), 1433–1440. https://doi.org/10.1111/j.1532-5415.2010.02979.x
Valavanidis, A., Vlachogianni, T., & Fiotakis, K. (2009). Tobacco smoke: involvement of reactive oxygen species and stable free radicals in mechanisms of oxidative damage, carcinogenesis and synergistic effects with other respirable particles. International journal of environmental research and public health, 6(2), 445–462. https://doi.org/10.3390/ijerph6020445
Vale, C., Neves, J. S., von Hafe, M., Borges-Canha, M., & Leite-Moreira, A. (2019). The role of thyroid hormones in heart failure. Cardiovascular drugs and therapy, 33(2), 179–188. https://doi.org/ 10.1007/s10557-019-06870-4
Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T., Mazur, M., & Telser, J. (2007). Free radicals and antioxidants in normal physiological functions and human disease. The international journal of biochemistry & cell biology, 39(1), 44–84. https://doi.org/10.1016/j.biocel.2006.07.001
Vargas-Uricoechea, H., Bonelo-Perdomo, A., & Sierra-Torres, C. H. (2014). Effects of thyroid hormones on the heart. Clinica e investigacion en arteriosclerosis: publicacion oficial de la Sociedad Espanola de Arteriosclerosis, 26(6), 296–309. https://doi.org/10.1016/j.arteri.2014.07.003
Vassalle, C., Novembrino, C., Maffei, S., Sciarrino, R., De Giuseppe, R., Vigna, L., de Liso, F., Mercuri, A., & Bamonti, F. (2011). Determinants of oxidative stress related to gender: relevance of age and smoking habit. Clinical chemistry and laboratory medicine, 49(9), 1509–1513. https://doi.org/ 10.1515/CCLM.2011.622
Venditti, P., & Di Meo, S. (2006). Thyroid hormone-induced oxidative stress. Cellular and molecular life sciences: CMLS, 63(4), 414–434. https://doi.org/10.1007/s00018-005-5457-9
Venditti, P., Di Stefano, L., & Di Meo, S. (2010). Oxidative stress in cold-induced hyperthyroid state. The Journal of experimental biology, 213(Pt 17), 2899–2911. https://doi.org/10.1242/jeb.043307
Villanueva, I., Alva-Sánchez, C., & Pacheco-Rosado, J. (2013). The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxidative medicine and cellular longevity, 2013, 218145. https://doi.org/10.1155/2013/218145
Vina, J., Sanchis-Gomar, F., Martinez-Bello, V., & Gomez-Cabrera, M. C. (2012). Exercise acts as a drug; the pharmacological benefits of exercise. British journal of pharmacology, 167(1), 1–12. https://doi.org/10.1111/j.1476-5381.2012.01970.x
Wojtczak, A., & Skretkowicz, J. (2007). Genetics in ischaemic heart disease. Polski merkuriusz lekarski: organ Polskiego Towarzystwa Lekarskiego, 23(133), 5–8. (in Polish)
Zar, J. H. (1999). Biostatistic Analysis. 4th ed. Prentice Hall Inc.
Zarković, M. (2012). The role of oxidative stress on the pathogenesis of graves’ disease. Journal of thyroid research, 2012, 302537. https://doi.org/10.1155/2012/302537
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Наталія Кургалюк, Малгожата Дубік-Тота, Кшиштоф Тота, Галина Ткаченко
This work is licensed under a Creative Commons Attribution 4.0 International License.