EVALUATION OF ANTIMICROBIAL ACTIVITY OF ETHANOLIC EXTRACT DERIVED FROM LEAVES OF FICUS CYATHISTIPULA WARB. (MORACEAE)
DOI:
https://doi.org/10.58407/bht.3.22.4Keywords:
Ficus cyathistipula Warb, Gram-negative bacteria, Gram-positive bacteria, susceptibility or resistance of bacteria, Kirby-Bauer disc diffusion techniqueAbstract
Purpose: We continue our investigations regarding assessing the antibacterial and antioxidant properties of extracts derived from the leaves of various plants belonging to the Ficus genus. In the current study, we aimed to assess the antibacterial properties of ethanolic extract prepared from leaves of Ficus cyathistipula Warb. against some Gram-positive and Gram-negative bacteria to evaluate the possible use of this plant in the prevention and treatment of bacterial infections caused by these bacteria.
Methodology. The leaves of F. cyathistipula were sampled at M.M. Gryshko National Botanic Garden (NBG, Kyiv, Ukraine) and the Botanic Garden of Ivan Franko National University in Lviv (Lviv, Ukraine). Freshly collected leaves were washed, weighed, and homogenized in 96% ethanol (in the proportion of 1:9, w/w) at room temperature. The extract was then filtered and investigated for its antimicrobial activity. The testing of the antibacterial activity of the plant extract was carried out in vitro by the Kirby-Bauer disc diffusion technique. Gram-negative bacteria, Pseudomonas aeruginosa (Schroeter) Migula (ATCC®27853™), Escherichia coli (Migula) Castellani and Chalmers (ATCC®35218™), and Escherichia coli (Migula) Castellani and Chalmers (ATCC®25922™), as well as Gram-positive bacteria Staphylococcus aureus subsp. aureus strain (ATCC®25923™), Staphylococcus aureus subsp. aureus strain (ATCC®29213™) and methicillin-resistant Staphylococcus aureus (NEQAS 3679™), as well as the fungus Candida albicans locally isolated, were used as test organisms. Zone diameters were determined and averaged. The following zone diameter criteria were used to assign susceptibility or resistance of bacteria to the phytochemicals tested: Susceptible ≥ 15 mm, Intermediate = 10–15 mm, and Resistant ≤ 10 mm.
Scientific novelty. The ethanolic extract derived from the leaves of F. cyathistipula exhibited varying inhibitory activities against all the test strains. More sensitive for this extract was C. albicans strain. S. aureus subsp. aureus strain (ATCC® 25923™), S. aureus subsp. aureus strain (ATCC® 29213™), methicillin-resistant S. aureus (NEQAS 3679™), P. aeruginosa (Schroeter) Migula (ATCC® 27853™), E. coli (Migula) Castellani and Chalmers (ATCC® 25922™), and E. coli (Migula) Castellani and Chalmers (ATCC® 35218™) strains were more resistant to F. cyathistipula extract. The results are encouraging enough to pursue bioactivity-guided fractionation of this extract and structure elucidation of the active phytoconstituents from the F. cyathistipula extract as a possible anti-bacterial agent.
Conclusions. S. aureus and C. albicans appeared to be more sensitive to the F. cyathistipula extract. The antibacterial activity may be associated with the presence of secondary metabolites. The results of this study provide baseline information on F. cyathistipula potential validity in the treatment of fungus-induced and bacterial infections, caused by Candida albicans and Staphylococcus aureus.
Downloads
References
Ahmed, F., & Urooj, A. (2010). Traditional uses, medicinal properties, and phytopharmacology of Ficus racemosa: a review. Pharmaceutical Biology, 48(6), 672–681.
Ashraf, K., Haque, M. R., Amir, M., Ahmad, N., Ahmad, W., Sultan, S., Ali Shah, S. A., Mahmoud Alafeefy, A., Mujeeb, M., & Bin Shafie, M. F. (2021). An Overview of Phytochemical and Biological Activities: Ficus deltoidea Jack and Other Ficus spp. Journal of Pharmacy & Bioallied Sciences, 13(1), 11–25.
Awolola, G. V., Koorbanally, N. A., Chenia, H., Shode, F. O., & Baijnath, H. (2014). Antibacterial and anti-biofilm activity of flavonoids and triterpenes isolated from the extracts of Ficus sansibarica Warb. subsp. sansibarica (Moraceae) extracts. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 11(3), 124–131.
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 45(4), 493–496.
Berg, C.C., & Corner, E.J.H. (2005). Moraceae (Ficus). In: Noteboom H.P. (ed.) Flora Malesiana, Ser. 1, Vol. 17, Part 2. Nederland, Leiden: National Herbarium.
Berg, C.C., & Wiebes, J.T. (1992). African fig trees and fig wasps. Koninklijke Nederlandse Akademie van Wetenschappen, Verhandelingen Afdeling Natuurkunde, 2de reeks, deel 89. North-Holland, Amsterdam.
Chindo, B. A., Ya’U, J., Danjuma, N. M., Okhale, S. E., Gamaniel, K. S., & Becker, A. (2014). Behavioral and anticonvulsant effects of the standardized extract of Ficus platyphylla stem bark. Journal of Ethnopharmacology, 154(2), 351–360.
Chouna, H. S. D., Dize, D., Kagho, D. U. K., Bankeu, J. J. K., Fongang, Y. S. F., Tali, M. B. T., Ponou, B. K., Bitchagno, G. T. M., Awantu, A. F., Tapondjou, L. A., Lenta, B. N., Fekam, F. B., Sewald, N., & Ngouela, S. A. (2022). Constituents from ripe figs of Ficus vallis-choudae Delile (Moraceae) with antiplasmodial activity. Parasitology Research, 121(7), 2121–2127.
Cook, J.M., & Rasplus, J.-Y. (2003). Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology & Evolution, 18(5), 241–248.
Cruz, J. M. D. A., Corrêa, R. F., Lamarão, C. V., Kinupp, V. F., Sanches, E. A., Campelo, P. H., & Bezerra, J. A. (2022). Ficus spp. fruits: Bioactive compounds and chemical, biological and pharmacological properties. Food Research International (Ottawa, Ont.), 152, 110928.
Dangarembizi, R., Erlwanger, K. H., Moyo, D., & Chivandi, E. (2012). Phytochemistry, pharmacology and ethnomedicinal uses of Ficus thonningii (Blume Moraceae): a review. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 10(2), 203–212.
Deepa, P., Sowndhararajan, K., Kim, S., & Park, S. J. (2018). A role of Ficus species in the management of diabetes mellitus: A review. Journal of Ethnopharmacology, 215, 210–232.
Dell'Annunziata, F., Sellitto, C., Franci, G., Marcotullio, M. C., Piovan, A., Della Marca, R., Folliero, V., Galdiero, M., Filippelli, A., Conti, V., & Delfino, D. V. (2022). Antiviral Activity of Ficus rubiginosa Leaf Extracts against HSV-1, HCoV-229E and PV-1. Viruses, 14(10), 2257.
El-Sakhawy, F., Kassem, H., Abou-Hussein, D., El-Gayed, S., Mostafa, M., & Ahmed, R. (2016). Phytochemical investigation of the bioactive extracts of the leaves of Ficus cyathistipula Warb. Zeitschrift fur Naturforschung. C, Journal of Biosciences, 71(5-6), 141–154.
Garg, S., & Roy, A. (2020). A Current Perspective of Plants as an Antibacterial Agent: A Review. Current Pharmaceutical Biotechnology, 21(15), 1588–1602. https://doi.org/10.2174/1389201021666200622121249.
Gregory, M., Divya, B., Mary, R. A., Viji, M. M., Kalaichelvan, V. K., & Palanivel, V. (2013). Anti-ulcer activity of Ficus religiosa leaf ethanolic extract. Asian Pacific Journal of Tropical Biomedicine, 3(7), 554–556.
Khairunisa, S. Q., Indriati, D. W., Tumewu, L., Widyawaruyanti, A., & Nasronudin, N. (2021). Screening of anti-HIV activities in ethanol extract and fractions from Ficus fistulosa leaves. Journal of Basic and Clinical Physiology and Pharmacology, 32(4), 737–742.
Khan, N. A., Tomar, C., Shrivastav, A., Ahmad, A., & Mishra, A. K. (2021). Evaluation of Ficus retusa L. Leaves with Special Reference to Antidiarrheal and Anti-spasmodic Activity. Current Drug Discovery Technologies, 18(1), 120–126.
Kim, H. S. (2005). Do not put too much value on conventional medicines. Journal of Ethnopharmacology, 100(1-2), 37–39. https://doi.org/10.1016/j.jep.2005.05.030.
Koukouikila-Koussounda, F., Abena, A. A., Nzoungani, A., Mombouli, J. V., Ouamba, J. M., Kun, J., & Ntoumi, F. (2012). In vitro evaluation of antiplasmodial activity of extracts of Acanthospermum hispidum DC (Asteraceae) and Ficus thonningii Blume (Moraceae), two plants used in traditional medicine in the Republic of Congo. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 10(2), 270–276.
Kubo, M., Yatsuzuka, W., Matsushima, S., Harada, K., Inoue, Y., Miyamoto, H., Matsumoto, M., & Fukuyama, Y. (2016). Antimalarial Phenanthroindolizine Alkaloids from Ficus septica. Chemical & Pharmaceutical Bulletin, 64(7), 957–960.
Kuete, V., Ngameni, B., Simo, C. C., Tankeu, R. K., Ngadjui, B. T., Meyer, J. J., Lall, N., & Kuiate, J. R. (2008). Antimicrobial activity of the crude extracts and compounds from Ficus chlamydocarpa and Ficus cordata (Moraceae). Journal of Ethnopharmacology, 120(1), 17–24.
Kumar Goyal, A., Sharma, R., Kaur, R., & Kaushik, D. (2014). In vitro studies on antibiotic activity of Ficus religiosa fruits extract against human pathogenic Bacteria. Journal of Chemical and Pharmaceutical Research, 6(11), 80-84.
Lansky, E. P., & Paavilainen, H. M. (2011). Figs: the genus Ficus. In: Hardman R. (ed.) Traditional herbal medicines for modern times, Vol. 9., Boca Raton: CRC Press, 1-357.
Lansky, E. P., Paavilainen, H. M., Pawlus, A. D., & Newman, R. A. (2008). Ficus spp. (fig): ethnobotany and potential as anticancer and anti-inflammatory agents. Journal of Ethnopharmacology, 119(2), 195–213.
Liu, Y. P., Guo, J. M., Yan, G., Zhang, M. M., Zhang, W. H., Qiang, L., & Fu, Y. H. (2019). Anti-Inflammatory and Antiproliferative Prenylated Isoflavone Derivatives from the Fruits of Ficus carica. Journal of Agricultural and Food Chemistry, 67(17), 4817–4823.
Madiwalar, V. S., Dwivedi, P. S. R., Patil, A., Gaonkar, S. M. N., Kumbhar, V. J., Khanal, P., & Patil, B. M. (2022). Ficus benghalensis promotes the glucose uptake – Evidence with in silico and in vitro. Journal of Diabetes and Metabolic Disorders, 21(1), 429–438.
Mandal, S. C., Saha, B. P., & Pal, M. (2000). Studies on antibacterial activity of Ficus racemosa Linn. leaf extract. Phytotherapy Research: PTR, 14(4), 278–280.
Mohd Dom, N. S., Yahaya, N., Adam, Z., Nik Abd Rahman, N. M. A., & Hamid, M. (2020). Antiglycation and Antioxidant Properties of Ficus deltoidea Varieties. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 2020, 6374632.
Murti, K., & Kumar, U. (2012). Enhancement of wound healing with roots of Ficus racemosa L. in albino rats. Asian Pacific Journal of Tropical Biomedicine, 2(4), 276–280.
Niño, J., Mosquera, O. M., & Correa, Y. M. (2012). Antibacterial and antifungal activities of crude plant extracts from Colombian biodiversity. Revista de Biologia Tropical, 60(4), 1535–1542.
Ogunlaja, O. O., Moodley, R., Singh, M., Baijnath, H., & Jonnalagadda, S. B. (2018). Cytotoxic activity of the bioactive principles from Ficus burtt-davyi. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 53(4), 261–275.
Okoth, D. A., Chenia, H. Y., Koorbanally, N. A. (2013). Antibacterial and antioxidant activities of flavonoids from Lannea alata (Engl.) Engl. (Anacardiaceae). Phytochemistry Letters, 6, 476–481.
Parameswari, S. A., Chetty, C. M., & Chandrasekhar, K. B. (2013). Hepatoprotective activity of Ficus religiosa leaves against isoniazid+rifampicin and paracetamol induced hepatotoxicity. Pharmacognosy Research, 5(4), 271–276.
Raji, Y., Oyeyemi, W. A., Shittu, S. T., & Bolarinwa, A. F. (2011). Gastro-protective effect of methanol extract of Ficus asperifolia bark on indomethacin-induced gastric ulcer in rats. Nigerian Journal of Physiological Sciences: Official Publication of the Physiological Society Of Nigeria, 26(1), 43–48.
Riaz, M. B., Khan, A. U., & Qazi, N. G. (2019). Pharmacological and computational evaluation of fig for therapeutic potential in hyperactive gastrointestinal disorders. BMC Complementary and Alternative Medicine, 19(1), 348.
Shi, Y., Mon, A. M., Fu, Y., Zhang, Y., Wang, C., Yang, X., & Wang, Y. (2018). The genus Ficus (Moraceae) used in diet: Its plant diversity, distribution, traditional uses and ethnopharmacological importance. Journal of Ethnopharmacology, 226, 185–196.
Tafroji, W., Margyaningsih, N. I., Khoeri, M. M., Paramaiswari, W. T., Winarti, Y., Salsabila, K., Putri, H. F. M., Siregar, N. C., Soebandrio, A., & Safari, D. (2022). Antibacterial activity of medicinal plants in Indonesia on Streptococcus pneumoniae. PloS One, 17(9), e0274174. https://doi.org/10.1371/journal.pone.0274174.
Tkachenko, G., Buyun, L., Osadovskyy, Z., Truhan, M., Sosnowski, E., Prokopiv, A., & Goncharenko, V. (2016). In vitro screening of antimicrobial activity of ethanolic extract obtained from Ficus lyrata Warb. (Moraceae) leaves. Agroecological Journal, 2, 155-160.
Tkachenko, H., Buyun, L., Kasiyan, O., Honcharenko, V., Prokopiv, A., & Osadowski, Z. (2018, October 3–5). The in vitro antibacterial activity of ethanolic extract obtained from Ficus sur Forssk. leaves (Moraceae). [Proceedings of International Scientific and Practical Conference]: Fundamental and practical issues of immunology and infectology, Vol. 2, Ufa.
Tkachenko, H., Buyun, L., Osadowski, Z., Honcharenko, V., & Prokopiv, A. (2017). The antimicrobial efficacy of ethanolic extract obtained from Ficus benghalensis L. (Moraceae) leaves. Agrobiodiversity for improving nutrition, health and life quality, 1, 438-445.
Usman, H., Abdulrahman, F., & Usman, A. (2009). Qualitative phytochemical screening and in vitro antimicrobial effects of methanol stem bark extract of Ficus thonningii (Moraceae). African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 6(3), 289–295.
Wei, S., Wu, W., & Ji, Z. (2012). New antifungal pyranoisoflavone from Ficus tikoua Bur. International Journal of Molecular Sciences, 13(6), 7375–7382.
Ye, X. S., Tian, W. J., Zhou, M., Zeng, D. Q., Lin, T., Wang, G. H., Yao, X. S., & Chen, H. F. (2021). Prenylated flavonoids from Ficus hirta induces HeLa cells apoptosis via MAPK and AKT signaling pathways. Bioorganic & Medicinal Chemistry Letters, 38, 127859.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 Biota. Human. Technology
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.