IN VITRO PROTECTIVE EFFECT OF LEAF EXTRACT OF FICUS DELTOIDEA JACK (MORACEAE) ON BIOMARKERS OF OXIDATIVE STRESS IN THE HUMAN ERYTHROCYTES

Authors

DOI:

https://doi.org/10.58407/bht.3.22.7

Keywords:

Ficus deltoidea Jack, human erythrocytes, lipid peroxidation, oxidatively modified proteins, total antioxidant capacity, hemolysis

Abstract

Purpose: to investigate the antioxidant properties of the aqueous extracts derived from leaves of Ficus deltoidea using the model of human blood. For this purpose, oxidative stress biomarkers [2-thiobarbituric acid reactive substances (TBARS), content of aldehydic and ketonic derivatives of oxidatively modified proteins, total antioxidant capacity (TAC)] in the human erythrocytes after in vitro incubation with aqueous extracts derived from leaves of F. deltoidea (at a final concentration of 5 mg/mL and 0.5 mg/mL) were used. Resistance of human erythrocytes after in vitro treatment by aqueous extracts derived from leaves of F. deltoidea (at a final concentration of 5 mg/mL and 0.5 mg/mL) was evaluated by HCl-induced hemolysis using a percentage of hemolyzed erythrocytes per each 30 sec. and a total time of hemolysis.

Methodology. The leaves of F. deltoidea were collected in M.M. Gryshko National Botanic Garden (Kyiv, Ukraine). Blood (10-20 mL) was obtained from normal volunteers via venipuncture (4 males and 5 females aged 28-53 years old). An erythrocyte suspension at 1% hematocrit was incubated with 4 mM phosphate buffer (pH 7.4) (control) and pre-incubated with the extract of F. deltoidea (at a final concentration of 5 mg/mL and 0.5 mg/mL, respectively) at 37 °C for 60 min. The level of lipid peroxidation was determined by quantifying the concentration of 2-thiobarbituric acid reacting substances (TBARS). The rate of protein oxidative destruction was estimated from the reaction of the resultant carbonyl derivatives of amino acid reaction with 2,4-dinitrophenylhydrazine (DNFH). The total antioxidant capacity (TAC) in the samples was estimated by measuring the TBARS level after Tween 80 oxidation. The HCl-induced resistance of erythrocytes was measured spectrophotometrically with 0.1M HCl. The significance of differences (significance level, p < 0.05) was examined using the Mann-Whitney U test.

Scientific novelty. The treatment of human erythrocytes by extract derived from leaves of F. deltoidea at the final concentration of 5 mg/mL resulted in an increase of TBARS as biomarkers of lipid peroxidation and aldehydic derivatives of oxidatively modified proteins with a simultaneous decrease in the total antioxidant capacity compared to the untreated samples. On the other hand, in vitro treatment of human erythrocytes with an extract derived from leaves of F. deltoidea at the final concentration of 0.5 mg/mL resulted in the same values of TBARS level, aldehydic and ketonic derivatives of OMP, and total antioxidant capacity as the untreated samples. Extract of F. deltoidea at the final concentrations of 5 mg/mL and 0.5 mg/mL possess hemolytic properties to human erythrocyte suspension after 1-h incubation in vitro.

Conclusions. The changes in the oxidative stress biomarkers using the in vitro model of human erythrocytes to evaluate the antioxidant activities of the aqueous extract derived from the leaves of F. deltoidea at the two final concentrations (5 mg/mL and 0.5 mg/mL) revealed that high concentration of extract (5 mg/mL) resulted in the increase of lipid peroxidation and protein oxidation with a simultaneous decline in the total antioxidant capacity. HCl-induced hemolysis was activated after the treatment by extract derived from the leaves of F. deltoidea at the two final concentrations. More studies are warranted in the future, to illustrate the potential and mechanisms of F. deltoidea in preventing oxidative stress using different cell models in vitro and different final concentrations of the extract. Also, further studies are warranted to identify the bioactive components that contribute to this protective effect.

Downloads

Download data is not yet available.

References

Abdel-Rahman, R. F., Ezzat, S. M., Ogaly, H. A., Abd-Elsalam, R. M., Hessin, A. F., Fekry, M. I., Mansour, D. F., & Mohamed, S. O. (2020). Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. Journal of Nutritional Science, 9, e2. https://doi.org/10.1017/jns.2019.40.

Adam, Z., Ismail, A., Khamis, S., Mohd. Mokhtar, M.H., Hamid, M. (2011). Antihyperglycemic activity of F. deltoidea ethanolic extract in normal rats. Sains Malaysiana, 40(5), 489–495.

Adam, Z., Khamis, S., Ismail, A., & Hamid, M. (2012). Ficus deltoidea: A potential alternative medicine for diabetes mellitus. Evidence-based complementary and alternative medicine: eCAM, 2012, 632763. https://doi.org/10.1155/2012/632763.

Ashraf, K., Haque, M. R., Amir, M., Ahmad, N., Ahmad, W., Sultan, S., Ali Shah, S. A., Mahmoud Alafeefy, A., Mujeeb, M., & Bin Shafie, M. F. (2021). An overview of phytochemical and biological activities: Ficus deltoidea Jack and other Ficus spp. Journal of Pharmacy & Bioallied Sciences, 13(1), 11–25. https://doi.org/10.4103/jpbs.JPBS_232_19.

Berg, C.C. (2001). Moreae, Artocarpeae, and Dorstenia (Moraceae), with introductions to the family and Ficus and with additions and corrections to Flora Neotropica Monograph 7. Flora Neotropica Monograph 83. New York: The New York Botanical Garden.

Berg, C.C., Corner, E.J.H. (2005). Moraceae (Ficus). In: Noteboom H.P. (ed.) Flora Malesiana, Ser. 1, Vol. 17, Part 2. National Herbarium Nederland, Leiden

Berg, C.C., Wiebes, J.T. (1992). African fig trees and fig wasps. Koninklijke Nederlandse Akademie van Wetenschappen, Verhandelingen Afdeling Natuurkunde, 2de reeks, deel 89. North-Holland, Amsterdam

Bunawan, H., Amin, N. M., Bunawan, S. N., Baharum, S. N., & Mohd Noor, N. (2014). Ficus deltoidea Jack: A review on its phytochemical and pharmacological importance. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 902734. https://doi.org/10.1155/2014/902734.

Che Ahmad Tantowi, N. A., Lau, S. F., & Mohamed, S. (2018). Ficus deltoidea Prevented Bone Loss in Preclinical Osteoporosis/Osteoarthritis Model by Suppressing Inflammation. Calcified Tissue International, 103(4), 388–399. https://doi.org/10.1007/s00223-018-0433-1.

Clement, W.L., Weiblen, G.D. (2009). Morphological evolution in the mulberry family (Moraceae). Systematic Botany, 34(3), 530-552.

Cook, J.M., Rasplus, J.-Y. 2003. Mutualists with attitude: coevolving fig wasps and figs. Trends in Ecology & Evolution, 18(5), 241–248.

Datwyler, S.L., Weiblen, G.D. (2004). On the origin of the fig: phylogenetic relationships of Moraceae from ndhF sequences. American Journal of Botany, 91(5), 767-777.

Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Okislitel'naia modifikatsiia belkov syvorotki krovi cheloveka, metod ee opredeleniia [Oxidative modification of human serum proteins. A method of determining it]. Voprosy meditsinskoi khimii, 41(1), 24–26.

Galaktionova, L. P., Molchanov, A. V., El'chaninova, S. A., & Varshavskiĭ, B. I.a (1998). Sostoianie perekisnogo okisleniia u bol'nykh s iazvennoĭ bolezn'iu zheludka i dvenadtsatiperstnoĭ kishki [Lipid peroxidation in patients with gastric and duodenal peptic ulcers]. Klinicheskaia laboratornaia diagnostika, (6), 10–14.

Hakiman, M., Maziah, M. (2009). Non enzymatic and enzymatic antioxidant activities in aqueous extract of different Ficus deltoidea accessions. Journal of Medicinal Plants Research, 3(3), 120-131.

Harun, H., Musapha, Z. (2015). Phytochemical constituents in leaves and callus of Ficus deltoidea Jack var. Kunstleri (King) Corner. Walailak Journal of Science and Technology, 12(5), 431–439.

Haslan, M. A., Samsulrizal, N., Hashim, N., Zin, N. S. N. M., Shirazi, F. H., & Goh, Y. M. (2021). Ficus deltoidea ameliorates biochemical, hormonal, and histomorphometric changes in letrozole-induced polycystic ovarian syndrome rats. BMC Complementary Medicine and Therapies, 21(1), 291. https://doi.org/10.1186/s12906-021-03452-6.

Kamyshnikov, V.S. (2004). A reference book on the clinic and biochemical researches and laboratory diagnostics. MEDpress-inform, Moscow.

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in Enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-h.

Luqman, S., Kaushik, S., Srivastava, S., Kumar, R., Bawankule, D. U., Pal, A., Mahendra P. Darokar, M. P. & Khanuja, S. P. S. (2009). Protective effect of medicinal plant extracts on biomarkers of oxidative stress in erythrocytes. Pharmaceutical Biology, 47(6), 483–490. https://doi.org/10.1080/13880200902832900.

Maizatul, H.O., Mullen, W., Crozier, A. (2011). Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides and antioxidants in Ficus deltoidea, a Malaysian herbal tea. Journal of Agricultural and Food Chemistry, 59, 1363-1369.

Misbah, H., Aziz, A. A., & Aminudin, N. (2013). Antidiabetic and antioxidant properties of Ficus deltoidea fruit extracts and fractions. BMC Complementary and Alternative Medicine, 13, 118. https://doi.org/10.1186/1472-6882-13-118.

Mohd Ariff, A., Abu Bakar, N. A., Abd Muid, S., Omar, E., Ismail, N. H., Ali, A. M., Mohd Kasim, N. A., & Mohd Nawawi, H. (2020). Ficus deltoidea suppresses endothelial activation, inflammation, monocytes adhesion and oxidative stress via NF-κB and eNOS pathways in stimulated human coronary artery endothelial cells. BMC Complementary Medicine and Therapies, 20(1), 56. https://doi.org/10.1186/s12906-020-2844-6.

Mohd Dom, N. S., Yahaya, N., Adam, Z., Nik Abd Rahman, N. M. A., & Hamid, M. (2020). Antiglycation and antioxidant properties of Ficus deltoidea varieties. Evidence-Based Complementary and Alternative Medicine: eCAM, 2020, 6374632. https://doi.org/10.1155/2020/6374632.

Omar, M. H., Mullen, W., & Crozier, A. (2011). Identification of proanthocyanidin dimers and trimers, flavone C-Glycosides, and antioxidants in Ficus deltoidea, a Malaysian herbal tea. Journal of Agricultural and Food Chemistry, 59(4), 1363–1369. https://doi.org/10.1021/jf1032729.

Omar, N. I., Baharin, B., Lau, S. F., Ibrahim, N., Mohd, N., Ahmad Fauzi, A., Muhammad, N., & Fernandez, N. M. (2020). The influence of Ficus deltoidea in preserving alveolar bone in ovariectomized Rats. Veterinary Medicine International, 2020, 8862489. https://doi.org/10.1155/2020/8862489.

Ooi, T. C., Ibrahim, F. W., Ahmad, S., Chan, K. M., Leong, L. M., Mohammad, N., Siew, E. L., & Rajab, N. F. (2021). Antimutagenic, cytoprotective and antioxidant properties of Ficus deltoidea aqueous extract in vitro. Molecules (Basel, Switzerland), 26(11), 3287. https://doi.org/10.3390/molecules26113287.

Samsulrizal, N., Goh, Y. M., Ahmad, H., Md Dom, S., Azmi, N. S., NoorMohamad Zin, N. S., & Ebrahimi, M. (2021). Ficus deltoidea promotes bone formation in streptozotocin-induced diabetic rats. Pharmaceutical Biology, 59(1), 66–73. https://doi.org/10.1080/13880209.2020.1865411.

Silihe, K. K., Zingue, S., Kemegne Sipping, M. T., Cazanevscaia, A. B., Dediu Botezatu, A. V., Njamen, D., Dinica, R. M. (2022). The Antioxidant Potential of Ficus umbellata Vahl (Moraceae) that accelerates in vitro and the in vivo anti-inflammatory protective effects. Applied Sciences, 12, 9070. https://doi.org/10.3390/ app12189070.

Terskov, I.A., Gitelson, I.I. (1957). Method of chemical (acid) erythrograms. Biofizika, 2, 259-266.

Tkachenko, H., Buyun, L., Kurhaluk, N., Honcharenko, V., Prokopiv, A. (2022). In vitro antioxidant response of the equine blood treated by leaf extract of Ficus drupacea Thunb. Agrobiodiversity for Improving Nutrition, Health and Life Quality, 6(2), 292–300. https://doi.org/10.15414/ainhlq.2022.0030.

Tkachenko, H., Buyun, L., Kurhaluk, N., Honcharenko, V., Prokopiv, A., Osadowski, Z. (2019). In vitro antioxidant activities of aqueous extracts derived from leaves of juvenile and mature shoots of Ficus pumila L. (Moraceae). Agrobiodiversity for Improving Nutrition, Health, and Life Quality, (3), 1-13. https://doi.org/10.15414/agrobiodiversity.2019.2585-8246.001-013.

Woon, S. M., Seng, Y. W., Ling, A. P., Chye, S. M., & Koh, R. Y. (2014). Anti-adipogenic effects of extracts of Ficus deltoidea var. deltoidea and var. angustifolia on 3T3-L1 adipocytes. Journal of Zhejiang University. Science. B, 15(3), 295–302. https://doi.org/10.1631/jzus.B1300123.

Yahaya, N., Mohd Dom, N. S., Adam, Z., & Hamid, M. (2018). Insulinotropic activity of standardized methanolic extracts of Ficus deltoidea from seven varieties. Evidence-Based Complementary and Alternative Medicine: eCAM, 2018, 3769874. https://doi.org/10.1155/2018/3769874.

Zaid, S. S. M., Othman, S., & Kassim, N. M. (2018). Protective role of Ficus deltoidea against BPA-induced impairments of the follicular development, estrous cycle, gonadotropin and sex steroid hormones level of prepubertal rats. Journal of Ovarian Research, 11(1), 99. https://doi.org/10.1186/s13048-018-0466-0

Zaid, S. S. M., Othman, S., & Kassim, N. M. (2021). Protective role of Mas Cotek (Ficus deltoidea) against the toxic effects of bisphenol A on morphology and sex steroid receptor expression in the rat uterus. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 140, 111757. https://doi.org/10.1016/j.biopha.2021.111757.

Zar J.H. 1999. Biostatistical Analysis. 4th ed., Prentice-Hall Inc., Englewood Cliffs, New Jersey.

Zolkiffly, S. Z. I., Stanslas, J., Abdul Hamid, H., & Mehat, M. Z. (2021). Ficus deltoidea: Potential inhibitor of pro-inflammatory mediators in lipopolysaccharide-induced activation of microglial cells. Journal of Ethnopharmacology, 279, 114309. https://doi.org/10.1016/j.jep.2021.114309.

Downloads

Published

2023-03-06

How to Cite

Tkachenko, H., Kurhaluk, N., Buyun, L., Honcharenko, V., & Prokopiv, A. (2023). IN VITRO PROTECTIVE EFFECT OF LEAF EXTRACT OF FICUS DELTOIDEA JACK (MORACEAE) ON BIOMARKERS OF OXIDATIVE STRESS IN THE HUMAN ERYTHROCYTES. Biota. Human. Technology, (3), 74–85. https://doi.org/10.58407/bht.3.22.7

Issue

Section

MAN AND HIS HEALTH