CHALLENGES AND OPPORTUNITIES IN ARTIFICIAL BLOOD

Authors

DOI:

https://doi.org/10.58407/bht.1.25.5

Keywords:

artificial blood, blood substitutes, clinical applications, haemoglobin carriers, oxygen therapeutic agents, perfluorocarbons, hemoglobin-based oxygen carriers

Abstract

Purpose: The aim of this study is to present the current state of research on artificial blood, its potential clinical applications and future directions for development. The shortage of blood in blood banks and the increasing demand for transfusions is a major challenge for modern medicine. As a result, scientists worldwide are working to develop effective blood substitutes that could act as oxygen carriers in the body and reduce dependence on traditional donors. This study discusses various strategies for synthesising artificial blood, taking into account advances in biotechnology, biomedical engineering and nanotechnology. Particular emphasis is placed on research into haemoglobin carriers and synthetic erythrocytes.

Materials and methods. To obtain reliable and comprehensive information on the development of blood substitutes, a review of the available scientific literature was conducted, including databases such as PubMed, Scopus, Web of Science and Google Scholar. Sources analysed included scientific articles, clinical trial reports, systematic reviews and reports on the latest technologies in biomedical engineering. The study discusses different types of red blood cell substitutes, focusing on haemoglobin isolated from different sources (e.g. recombinant haemoglobin, invertebrate haemoglobin), synthetic microparticles that mimic erythrocytes, and modern oxygen carriers. Special attention has been given to the results of clinical trials that provide information on the safety, efficacy and potential limitations of these solutions.

Scientific novelty. This article makes a significant contribution to the knowledge of artificial blood by providing a comprehensive overview of its potential and the challenges associated with its clinical application. Key issues such as the efficacy of blood substitutes compared to natural human blood, their bioavailability, stability and potential side effects are highlighted. It also looks at production costs and the acceptance of such products by the medical community and patients. The study also highlights the need for further research and the development of innovative technologies that could improve the availability and safety of artificial blood. Potential future research directions are discussed, including the use of nanotechnology, bioengineering and biomaterials to develop more efficient and safer blood substitutes.

Conclusions. The development of artificial red blood cell substitutes could be a breakthrough in emergency medicine and in situations where traditional transfusions are impossible or difficult to perform (e.g., in combat situations, natural disasters, or locations with limited blood supply). Despite years of research and technological advances, many blood substitutes face challenges related to limited stability, potential toxicity and the ability to effectively transport oxygen. Existing products that have undergone clinical trials show promising properties, but are still far from fully replacing natural blood. Research suggests that further work to improve artificial blood should focus on improving safety, extending shelf life and optimising production costs. The outlook in this field is promising, and future advances could revolutionise the treatment of patients requiring blood transfusions and contribute to improved access to healthcare worldwide.

Downloads

Download data is not yet available.

References

Abutarboush, R., Aligbe, C., Pappas, G., Saha, B., Arnaud, F., Haque, A., Auker, C., McCarron, R., Scultetus, A., & Moon-Massat, P. (2014). Effects of the Oxygen-Carrying Solution OxyVita C on the Cerebral Microcirculation and Systemic Blood Pressures in Healthy Rats. Journal of functional biomaterials, 5(4), 246–258. https://doi.org/10.3390/jfb5040246

Alix, P., Val-Laillet, D., Turlin, B., Ben Mosbah, I., Burel, A., Bobillier, E., Bendavid, C., Delpy, E., Zal, F., Corlu, A., & Boudjema, K. (2020). Adding the oxygen carrier M101 to a cold-storage solution could be an alternative to HOPE for liver graft preservation. JHEP reports: innovation in hepatology, 2(4), 100119. https://doi.org/10.1016/j.jhepr.2020.100119

Amberson, W. R., Jennings, J. J., & Rhode, C. M. (1949). Clinical experience with hemoglobin-saline solutions. Journal of applied physiology, 1(7), 469–489. https://doi.org/10.1152/jappl.1949.1.7.469

Amberson, W. R., Mulder, A. G., Steggerda, F. R., Flexner, J., & Pankratz, D. S. (1933). Mammalian life without red blood corpuscles. Science (New York, N.Y.), 78(2014), 106–107. https://doi.org/10.1126/science.78.2014.106

Arifin, D. R., & Palmer, A. F. (2005). Polymersome encapsulated hemoglobin: a novel type of oxygen carrier. Biomacromolecules, 6(4), 2172–2181. https://doi.org/10.1021/bm0501454

Artificial Blood from the Warsaw University of Technology. https://nawa.gov.pl/en/snapy/artificial-blood-from-the-warsaw-university-of-technology

Astruc, D., Boisselier, E., & Ornelas, C. (2010). Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine. Chemical reviews, 110(4), 1857–1959. https://doi.org/10.1021/cr900327d

Azuma, H., & Sakai, H. (2019). [Translational research for artificial red blood cells (hemoglobin vesicles)] [Rinsho ketsueki]. The Japanese journal of clinical hematology, 60(9), 1084–1091. https://doi.org/10.11406/rinketsu.60.1084

Baron J. F. (1999). Blood substitutes. Haemoglobin therapeutics in clinical practice. Critical care (London, England), 3(5), R99–R102. https://doi.org/10.1186/cc365

Batool, F., Delpy, E., Zal, F., Leize-Zal, E., & Huck, O. (2021). Therapeutic Potential of Hemoglobin Derived from the Marine Worm Arenicola marina (M101): A Literature Review of a Breakthrough Innovation. Marine drugs, 19(7), 376. https://doi.org/10.3390/md19070376

Biro, G. P., & Blais, P. (1987). Perfluorocarbon blood substitutes. Critical reviews in oncology/hematology, 6(4), 311–374. https://doi.org/10.1016/s1040-8428(87)80018-5.

Bloch, E. M., Vermeulen, M., & Murphy, E. (2012). Blood transfusion safety in Africa: a literature review of infectious disease and organizational challenges. Transfusion medicine reviews, 26(2), 164–180. https://doi.org/10.1016/j.tmrv.2011.07.006

Bobofchak, K. M., Mito, T., Texel, S. J., Bellelli, A., Nemoto, M., Traystman, R. J., Koehler, R. C., Brinigar, W. S., & Fronticelli, C. (2003). A recombinant polymeric hemoglobin with conformational, functional, and physiological characteristics of an in vivo O2 transporter. American journal of physiology. Heart and circulatory physiology, 285(2), H549–H561. https://doi.org/10.1152/ajpheart.00037.2003

Bonsen, P., Laver, M., Morris, K., inventors; Alza Corporation, assignee. Novel polymerized, cross-linked, stroma-free hemoglobin. United States, 1975

Bowman R. J. (1983). Red blood cell substitutes and artificial blood. Human pathology, 14(3), 218–220. https://doi.org/10.1016/s0046-8177(83)80020-3

Boykins, R. A., Buehler, P. W., Jia, Y., Venable, R., & Alayash, A. I. (2005). O-raffinose crosslinked hemoglobin lacks site-specific chemistry in the central cavity: structural and functional consequences of beta93Cys modification. Proteins, 59(4), 840–855. https://doi.org/10.1002/prot.20453

Browdie, D., & Smith, H. (1975). Stroma-free hemoglobin. Simplied preparation and in vivo and in vitro effects on coagulation in rabbits. American journal of surgery, 129(4), 365–368. https://doi.org/10.1016/0002-9610(75)90178-6

Bunn, H. F., & Jandl, J. H. (1968). The renal handling of hemoglobin. Transactions of the Association of American Physicians, 81, 147–152

Burhop K. (2022). Development of Recombinant Hemoglobin-Based Oxygen Carriers-Somatogen: Studies and Lessons Learned. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer

Cabrales, P., & Intaglietta, M. (2013). Blood substitutes: evolution from noncarrying to oxygen- and gas-carrying fluids. ASAIO journal (American Society for Artificial Internal Organs: 1992), 59(4), 337–354. https://doi.org/10.1097/MAT.0b013e318291fbaa

Carmichael, F. J., Ali, A. C., Campbell, J. A., Langlois, S. F., Biro, G. P., Willan, A. R., Pierce, C. H., & Greenburg, A. G. (2000). A phase I study of oxidized raffinose cross-linked human hemoglobin. Critical care medicine, 28(7), 2283–2292. https://doi.org/10.1097/00003246-200007000-00017

Chang T. M. (1992). Blood substitutes based on modified hemoglobin prepared by encapsulation or crosslinking: an overview. Biomaterials, artificial cells, and immobilization biotechnology: official journal of the International Society for Artificial Cells and Immobilization Biotechnology, 20(2-4), 159–179. https://doi.org/10.3109/10731199209119634

Chang T. M. (2003). Future generations of red blood cell substitutes. Journal of internal medicine, 253(5), 527–535. https://doi.org/10.1046/j.1365-2796.2003.01151.x

Chang T. M. (2006). Blood substitutes based on nanobiotechnology. Trends in biotechnology, 24(8), 372–377. https://doi.org/10.1016/j.tibtech.2006.06.005

Chang, T. M., Powanda, D., & Yu, W. P. (2003). Analysis of polyethylene-glycol-polylactide nano-dimension artificial red blood cells in maintaining systemic hemoglobin levels and prevention of methemoglobin formation. Artificial cells, blood substitutes, and immobilization biotechnology, 31(3), 231–247. https://doi.org/10.1081/bio-120023155

Chen, J. Y., Scerbo, M., & Kramer, G. (2009). A review of blood substitutes: examining the history, clinical trial results, and ethics of hemoglobin-based oxygen carriers. Clinics (Sao Paulo, Brazil), 64(8), 803–813. https://doi.org/10.1590/S1807-59322009000800016

Chen, J., Pan, H., Lanza, G. M., & Wickline, S. A. (2013). Perfluorocarbon nanoparticles for physiological and molecular imaging and therapy. Advances in chronic kidney disease, 20(6), 466–478. https://doi.org/10.1053/j.ackd.2013.08.004

Chen, L., Yang, Z., & Liu, H. (2023). Hemoglobin-Based Oxygen Carriers: Where Are We Now in 2023?. Medicina (Kaunas, Lithuania), 59(2), 396. https://doi.org/10.3390/medicina59020396

Clark, L. C., Jr, & Gollan, F. (1966). Survival of mammals breathing organic liquids equilibrated with oxygen at atmospheric pressure. Science (New York, N.Y.), 152(3730), 1755–1756. https://doi.org/10.1126/science.152.3730.1755

Cohn, C. S., & Cushing, M. M. (2009). Oxygen therapeutics: perfluorocarbons and blood substitute safety. Critical care clinics, 25(2). https://doi.org/10.1016/j.ccc.2008.12.007

Cooper, C. E., Bird, M., Sheng, X., Choi, J. W., Silkstone, G. G. A., Simons, M., Syrett, N., Piano, R., Ronda, L., Bettati, S., Paredi, G., Mozzarelli, A., & Reeder, B. J. (2021). Stability of Maleimide-PEG and Mono-Sulfone-PEG Conjugation to a Novel Engineered Cysteine in the Human Hemoglobin Alpha Subunit. Frontiers in chemistry, 9, 707797. https://doi.org/10.3389/fchem.2021.707797

Dellinger, E. P., & Anaya, D. A. (2004). Infectious and immunologic consequences of blood transfusion. Critical care (London, England), 8 Suppl. 2(Suppl. 2), S18–S23. https://doi.org/10.1186/cc2847

Dong, Q., & Stowell, C. P. (2002). Blood substitutes. What they are and how they might be used. American journal of clinical pathology, 118 Suppl., S71–S80. https://doi.org/10.1309/6P2J-2B1K-GU0T-M5PR

Elmer, J., Palmer, A. F., & Cabrales, P. (2012). Oxygen delivery during extreme anemia with ultra-pure earthworm hemoglobin. Life sciences, 91(17-18), 852–859. https://doi.org/10.1016/j.lfs.2012.08.036

ErythroMer: Nanoscale BioSynthetic Red Cell Substitute, 2024. Project Number 5R44HL135965-05; Former Number 2R44HL135965-04; Contact PI/Project Leader: ALP, ESMA; Awardee Organization: KALOCYTE, INC. Available: https://reporter.nih.gov/project-details/10844356#details

Faggiano, S., Ronda, L., Bruno, S., Abbruzzetti, S., Viappiani, C., Bettati, S., & Mozzarelli, A. (2022). From hemoglobin allostery to hemoglobin-based oxygen carriers. Molecular aspects of medicine, 84, 101050. https://doi.org/10.1016/j.mam.2021.101050

Fronticelli, C., & Koehler, R. C. (2009). Design of recombinant hemoglobins for use in transfusion fluids. Critical care clinics, 25(2). https://doi.org/10.1016/j.ccc.2008.12.010

Frost, A. T., Jacobsen, I. H., Worberg, A., & Martínez, J. L. (2018). How Synthetic Biology and Metabolic Engineering Can Boost the Generation of Artificial Blood Using Microbial Production Hosts. Frontiers in bioengineering and biotechnology, 6, 186. https://doi.org/10.3389/fbioe.2018.00186

Gasparovic Babic, S., Krsek, A., & Baticic, L. (2024). Voluntary Blood Donation in Modern Healthcare: Trends, Challenges, and Opportunities. Epidemiologia (Basel, Switzerland), 5(4), 770–784. https://doi.org/10.3390/epidemiologia5040052

Glorion, M., Polard, V., Favereau, F., Hauet, T., Zal, F., Fadel, E., & Sage, E. (2018). Prevention of ischemia-reperfusion lung injury during static cold preservation by supplementation of standard preservation solution with HEMO2life® in pig lung transplantation model. Artificial cells, nanomedicine, and biotechnology, 46(8), 1773–1780. https://doi.org/10.1080/21691401.2017.1392315

Gomes, F. L., Jeong, S. H., Shin, S. R., Leijten, J., & Jonkheijm, P. (2024). Engineering Synthetic Erythrocytes as Next-Generation Blood Substitutes. Advanced functional materials, 34(28), 2315879. https://doi.org/10.1002/adfm.202315879

Gow, A. J., Payson, A. P., & Bonaventura, J. (2005). Invertebrate hemoglobins and nitric oxide: how heme pocket structure controls reactivity. Journal of inorganic biochemistry, 99(4), 903–911. https://doi.org/10.1016/j.jinorgbio.2004.12.001

Graves, P. E., Henderson, D. P., Horstman, M. J., Solomon, B. J., & Olson, J. S. (2008). Enhancing stability and expression of recombinant human hemoglobin in E. coli: Progress in the development of a recombinant HBOC source. Biochimica et biophysica acta, 1784(10), 1471–1479. https://doi.org/10.1016/j.bbapap.2008.04.012

Guidelines Review Committee. Towards 100% Voluntary Blood Donation: A Global Framework for Action. World Health Organization; Geneva, Switzerland: 2010. [(accessed on 7 October 2024)]. Available online: https://www.who.int/publications/i/item/9789241599696

Haldar, R., Gupta, D., Chitranshi, S., Singh, M. K., & Sachan, S. (2019). Artificial Blood: A Futuristic Dimension of Modern Day Transfusion Sciences. Cardiovascular & hematological agents in medicinal chemistry, 17(1), 11–16. https://doi.org/10.2174/1871525717666190617120045

Hegedüs, I., Dojcsak, É.K.-T., Szalai, A.J., et al. (2014). Single haemoglobin nanocapsules as test materials for artificial blood. Periodica Polytechnica Chemical Engineering, 58(suppl.), 11

Highsmith, F. A., Driscoll, C. M., Chung, B. C., Chavez, M. D., Macdonald, V. W., Manning, J. M., Lippert, L. E., Berger, R. L., & Hess, J. R. (1997). An improved process for the production of sterile modified haemoglobin solutions. Biologicals: journal of the International Association of Biological Standardization, 25(3), 257–268. https://doi.org/10.1006/biol.1997.0096

Hill, S. E., Gottschalk, L. I., & Grichnik, K. (2002). Safety and preliminary efficacy of hemoglobin raffimer for patients undergoing coronary artery bypass surgery. Journal of cardiothoracic and vascular anesthesia, 16(6), 695–702. https://doi.org/10.1053/jcan.2002.128416

Hoffman, S. J., Looker, D. L., Roehrich, J. M., Cozart, P. E., Durfee, S. L., Tedesco, J. L., & Stetler, G. L. (1990). Expression of fully functional tetrameric human hemoglobin in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 87(21), 8521–8525. https://doi.org/10.1073/pnas.87.21.8521

InformedHealth.org [Internet]. Cologne, Germany: Institute for Quality and Efficiency in Health Care (IQWiG); 2006-. In brief: What does blood do? [Updated 2023 Mar 16]. Available from: https://www.ncbi.nlm.nih.gov/books/NBK279392/

Jägers, J., Wrobeln, A., & Ferenz, K. B. (2021). Perfluorocarbon-based oxygen carriers: from physics to physiology. Pflugers Archiv: European journal of physiology, 473(2), 139–150. https://doi.org/10.1007/s00424-020-02482-2

Jahr, J. S., Guinn, N. R., Lowery, D. R., Shore-Lesserson, L., & Shander, A. (2021). Blood Substitutes and Oxygen Therapeutics: A Review. Anesthesia and analgesia, 132(1), 119–129. https://doi.org/10.1213/ANE.0000000000003957

Jahr, J. S., Walker, V., & Manoochehri, K. (2007). Blood substitutes as pharmacotherapies in clinical practice. Current opinion in anaesthesiology, 20(4), 325–330. https://doi.org/10.1097/ACO.0b013e328172225a

Jansman, M. M. T., & Hosta-Rigau, L. (2018). Recent and prominent examples of nano- and microarchitectures as hemoglobin-based oxygen carriers. Advances in colloid and interface science, 260, 65–84. https://doi.org/10.1016/j.cis.2018.08.006

Jia, Y., Ramasamy, S., Wood, F., Alayash, A. I., & Rifkind, J. M. (2004). Cross-linking with O-raffinose lowers oxygen affinity and stabilizes haemoglobin in a non-cooperative T-state conformation. The Biochemical journal, 384(Pt 2), 367–375. https://doi.org/10.1042/BJ20040612

Kakaei, N., Amirian, R., Azadi, M., Mohammadi, G., & Izadi, Z. (2023). Perfluorocarbons: A perspective of theranostic applications and challenges. Frontiers in bioengineering and biotechnology, 11, 1115254. https://doi.org/10.3389/fbioe.2023.1115254

Khan, F., Singh, K., & Friedman, M. T. (2020). Artificial Blood: The History and Current Perspectives of Blood Substitutes. Discoveries (Craiova, Romania), 8(1), e104. https://doi.org/10.15190/d.2020.1

Kim, H. W., & Greenburg, A. G. (2004). Artificial oxygen carriers as red blood cell substitutes: a selected review and current status. Artificial organs, 28(9), 813–828. https://doi.org/10.1111/j.1525-1594.2004.07345.x

Kozłowska, K., Wojta-Kempa, M. (2011). Wiedza i postawy studentów wrocławskich uczelni na temat krwiodawstwa [Knowledge and Attitudes Concerning the Blood Donation Among Students of Wroclaw]. Pielęgniarstwo i Zdrowie Publiczne, 1(2), 121-128

Kresie L. (2001). Artificial blood: an update on current red cell and platelet substitutes. Proceedings (Baylor University. Medical Center), 14(2), 158–161. https://doi.org/10.1080/08998280.2001.11927754

Lane T. A. (1995). Perfluorochemical-based artificial oxygen carrying red cell substitutes. Transfusion science, 16(1), 19–31. https://doi.org/10.1016/0955-3886(94)00067-t

Lang, M. E., Korecky, B., Anderson, P. J., & Biro, G. P. (1990). Stroma-free hemoglobin solutions prepared by crystallization and ultrafiltration methods; comparison of composition and coronary vasoconstrictor potency. Advances in experimental medicine and biology, 277, 225–236. https://doi.org/10.1007/978-1-4684-8181-5_28

Lantieri, L., Cholley, B., Lemogne, C., Guillemain, R., Ortonne, N., Grimbert, P., Thervet, E., & Lellouch, A. G. (2020). First human facial retransplantation: 30-month follow-up. Lancet (London, England), 396(10264), 1758–1765. https://doi.org/10.1016/S0140-6736(20)32438-7

Latson G. W. (2019). Perftoran (Vidaphor)-Introduction to Western Medicine. Shock (Augusta, Ga.), 52(1S Suppl. 1), 65–69. https://doi.org/10.1097/SHK.0000000000001063

Le Gall, T., Polard, V., Rousselot, M., Lotte, A., Raouane, M., Lehn, P., Opolon, P., Leize, E., Deutsch, E., Zal, F., & Montier, T. (2014). In vivo biodistribution and oxygenation potential of a new generation of oxygen carrier. Journal of biotechnology, 187, 1–9. https://doi.org/10.1016/j.jbiotec.2014.07.008

Le Meur, Y., Badet, L., Essig, M., Thierry, A., Büchler, M., Drouin, S., Deruelle, C., Morelon, E., Pesteil, F., Delpech, P. O., Boutin, J. M., Renard, F., & Barrou, B. (2020). First-in-human use of a marine oxygen carrier (M101) for organ preservation: A safety and proof-of-principle study. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 20(6), 1729–1738. https://doi.org/10.1111/ajt.15798

Lemaire, F., Sigrist, S., Delpy, E., Cherfan, J., Peronet, C., Zal, F., Bouzakri, K., Pinget, M., & Maillard, E. (2019). Beneficial effects of the novel marine oxygen carrier M101 during cold preservation of rat and human pancreas. Journal of cellular and molecular medicine, 23(12), 8025–8034. https://doi.org/10.1111/jcmm.14666

Li, S., Nickels, J., & Palmer, A. F. (2005). Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials, 26(17), 3759–3769. https://doi.org/10.1016/j.biomaterials.2004.09.015

Lowe K. C. (1999). Perfluorinated blood substitutes and artificial oxygen carriers. Blood reviews, 13(3), 171–184. https://doi.org/10.1054/blre.1999.0113

Lowe, K.C. (2006). Blood substitutes: from chemistry to clinic. Journal of Materials Chemistry, 16(43), 4189–4196

Lupon, E., Lellouch, A. G., Zal, F., Cetrulo, C. L., Jr, & Lantieri, L. A. (2021). Combating hypoxemia in COVID-19 patients with a natural oxygen carrier, HEMO2Life® (M101). Medical hypotheses, 146, 110421. https://doi.org/10.1016/j.mehy.2020.110421

Macciò, A., & Madeddu, C. (2012). Management of anemia of inflammation in the elderly. Anemia, 2012, 563251. https://doi.org/10.1155/2012/563251

Makowicz, D., Dziubaszewska, R., Lisowicz, K., & Makowicz, N. (2022). Wpływ regularnego oddawania krwi na organizm ludzki w opinii krwiodawców. Journal of Transfusion Medicine, 15(2), 141-149

Mallet, V., Dutheil, D., Polard, V., Rousselot, M., Leize, E., Hauet, T., Goujon, J. M., & Zal, F. (2014). Dose-ranging study of the performance of the natural oxygen transporter HEMO2 Life in organ preservation. Artificial organs, 38(8), 691–701. https://doi.org/10.1111/aor.12307

Mer, M., Hodgson, E., Wallis, L., Jacobson, B., Levien, L., Snyman, J., Sussman, M. J., James, M., van Gelder, A., Allgaier, R., & Jahr, J. S. (2016). Hemoglobin glutamer-250 (bovine) in South Africa: consensus usage guidelines from clinician experts who have treated patients. Transfusion, 56(10), 2631–2636. https://doi.org/10.1111/trf.13726

Mohandas, N., & Gallagher, P. G. (2008). Red cell membrane: past, present, and future. Blood, 112(10), 3939–3948. https://doi.org/10.1182/blood-2008-07-161166

Moon-Massat, P., Mullah, S. H., Abutarboush, R., Saha, B. K., Pappas, G., Haque, A., Auker, C., McCarron, R. M., Arnaud, F., & Scultetus, A. (2017). Cerebral Vasoactivity and Oxygenation with Oxygen Carrier M101 in Rats. Journal of neurotrauma, 34(19), 2812–2822. https://doi.org/10.1089/neu.2015.3908

Moradi, S., Jahanian-Najafabadi, A., & Roudkenar, M. H. (2016). Artificial Blood Substitutes: First Steps on the Long Route to Clinical Utility. Clinical medicine insights. Blood disorders, 9, 33–41. https://doi.org/10.4137/CMBD.S38461

Mushlin, P. S., Boucek, R. J., Jr, Parrish, M. D., Graham, T. P., Jr, & Olson, R. D. (1985). Beneficial effects of perfluorochemical artificial blood on cardiac function following coronary occlusion. Life sciences, 36(22), 2093–2102. https://doi.org/10.1016/0024-3205(85)90305-4

Nelson, D., Azari, M., Brown, R., Burhop, K., Bush, S., Catarello, J., Chuang, H., Downing, C., Estep, T., & Loewen, A. (1992). Preparation and characterization of diaspirin cross-linked hemoglobin solutions for preclinical studies. Biomaterials, artificial cells, and immobilization biotechnology: official journal of the International Society for Artificial Cells and Immobilization Biotechnology, 20(2-4), 423–427. https://doi.org/10.3109/10731199209119662

Niechwiadowicz-Czapka T., Klimczyk A. Leczenie krwią. Wydawnictwo Lekarskie PZWL, Warszawa, 2011, s. 81-96

Nishimura, N., Nitsuno, T., Naito, R. (1981). Clinical studies of a perfluorochemical, whole blood substitute. Critical Care Medicine, 9(3), 168

Osaro, E., & Charles, A. T. (2011). The challenges of meeting the blood transfusion requirements in Sub-Saharan Africa: the need for the development of alternatives to allogenic blood. Journal of blood medicine, 2, 7–21. https://doi.org/10.2147/JBM.S17194

Patton, J. N., & Palmer, A. F. (2005). Photopolymerization of bovine hemoglobin entrapped nanoscale hydrogel particles within liposomal reactors for use as an artificial blood substitute. Biomacromolecules, 6(1), 414–424. https://doi.org/10.1021/bm049432i

Pidcoke, H. F., Delacruz, W., Herzig, M. C., Schaffer, B. S., Leazer, S. T., Fedyk, C. G., Montogomery, R. K., Prat, N. J., Parida, B. K., Aden, J. K., Scherer, M. R., Reddick, R. L., Shade, R. E., & Cap, A. P. (2022). Perfluorocarbons cause thrombocytopenia, changes in RBC morphology and death in a baboon model of systemic inflammation. PloS one, 17(12), e0279694. https://doi.org/10.1371/journal.pone.0279694

Prempeh, A.B.A., & Cheng, D.C.H. (2022). O-Raffinose Cross-Linked Human Hemoglobin (Hemolink): History, Clinical Trials and Lessons Learned. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer; Cham, Switzerland: 2022. pp. 305–312

Priavalle, C., & De Angelo, J. (2022). Hemoximer: History, Pharmacology, Pre-Clinical Studies, Clinical Trials, and Lessons Learned. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer

Rameez, S., Alosta, H., & Palmer, A. F. (2008). Biocompatible and biodegradable polymersome encapsulated hemoglobin: a potential oxygen carrier. Bioconjugate chemistry, 19(5), 1025–1032. https://doi.org/10.1021/bc700465v

Rhodes CE, Denault D, Varacallo M. Physiology, Oxygen Transport. [Updated 2022 Nov 14]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK538336/

Riess J. G. (2005). Understanding the fundamentals of perfluorocarbons and perfluorocarbon emulsions relevant to in vivo oxygen delivery. Artificial cells, blood substitutes, and immobilization biotechnology, 33(1), 47–63. https://doi.org/10.1081/bio-200046659

Riess J. G. (2006). Perfluorocarbon-based oxygen delivery. Artificial cells, blood substitutes, and immobilization biotechnology, 34(6), 567–580. https://doi.org/10.1080/10731190600973824

Romito, B., Romito, J., & Abuchowski, A. (2022). Blood Substitutes and Oxygen Biotherapeutics. Springer; Cham, Switzerland: 2022. Sanguinate: History and Clinical Evaluation of a Multimodal HBOCs; pp. 335–343

Rousselot, M., Delpy, E., Drieu La Rochelle, C., Lagente, V., Pirow, R., Rees, J. F., Hagege, A., Le Guen, D., Hourdez, S., & Zal, F. (2006). Arenicola marina extracellular hemoglobin: a new promising blood substitute. Biotechnology journal, 1(3), 333–345. https://doi.org/10.1002/biot.200500049

Sakai, H., Horinouchi, H., Tomiyama, K., Ikeda, E., Takeoka, S., Kobayashi, K., & Tsuchida, E. (2001). Hemoglobin-vesicles as oxygen carriers: influence on phagocytic activity and histopathological changes in reticuloendothelial system. The American journal of pathology, 159(3), 1079–1088. https://doi.org/10.1016/S0002-9440(10)61783-X

Sakai, H., Kobayashi, N., Kure, T., Azuma, H. (2022). Potential Clinical Application of Hemoglobin Vesicles as an Artificial Oxygen Carrier and Carbon Monoxide Carrier. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer

Sakai, H., Sou, K., & Tsuchida, E. (2009). Hemoglobin-vesicles as an artificial oxygen carrier. Methods in enzymology, 465, 363–384. https://doi.org/10.1016/S0076-6879(09)65019-9.

Sarkar S. (2008). Artificial blood. Indian journal of critical care medicine: peer-reviewed, official publication of Indian Society of Critical Care Medicine, 12(3), 140–144. https://doi.org/10.4103/0972-5229.43685

Scott, R. W., Wilson, O. M., & Crooks, R. M. (2005). Synthesis, characterization, and applications of dendrimer-encapsulated nanoparticles. The journal of physical chemistry. B, 109(2), 692–704. https://doi.org/10.1021/jp0469665

Seifried, E., & Mueller, M. M. (2011). The present and future of Transfusion Medicine. Blood transfusion = Trasfusione del sangue, 9(4), 371–376. https://doi.org/10.2450/2011.0097-10

Sen Gupta A. (2019). Hemoglobin-based Oxygen Carriers: Current State-of-the-art and Novel Molecules. Shock (Augusta, Ga.), 52(1S Suppl. 1), 70–83. https://doi.org/10.1097/SHK.0000000000001009

Sharma, A., Arora, S., Grewal, P., Dhillon, V., Kumar, V. (2011). Recent innovations in delivery of artificial blood substitute: a review. International Journal of Applied Pharmaceutics, 3(2), 1–5

Sharma, S., Sharma, P., & Tyler, L. N. (2011). Transfusion of blood and blood products: indications and complications. American family physician, 83(6), 719–724

Sheng, Y., Yuan, Y., Liu, C., Tao, X., Shan, X., & Xu, F. (2009). In vitro macrophage uptake and in vivo biodistribution of PLA-PEG nanoparticles loaded with hemoglobin as blood substitutes: effect of PEG content. Journal of materials science. Materials in medicine, 20(9), 1881–1891. https://doi.org/10.1007/s10856-009-3746-9

Shi, Q., Huang, Y., Chen, X., Wu, M., Sun, J., & Jing, X. (2009). Hemoglobin conjugated micelles based on triblock biodegradable polymers as artificial oxygen carriers. Biomaterials, 30(28), 5077–5085. https://doi.org/10.1016/j.biomaterials.2009.05.082

Simoni, J., Simoni, G., & Moeller, J. F. (2009). Intrinsic toxicity of hemoglobin: how to counteract it. Artificial organs, 33(2), 100–109. https://doi.org/10.1111/j.1525-1594.2008.00693.x

Sloan, E. P., Koenigsberg, M., Gens, D., Cipolle, M., Runge, J., Mallory, M. N., & Rodman, G., Jr (1999). Diaspirin cross-linked hemoglobin (DCLHb) in the treatment of severe traumatic hemorrhagic shock: a randomized controlled efficacy trial. JAMA, 282(19), 1857–1864. https://doi.org/10.1001/jama.282.19.1857

Smani Y. (2008). Hemospan: a hemoglobin-based oxygen carrier for potential use as a blood substitute and for the potential treatment of critical limb ischemia. Current opinion in investigational drugs (London, England: 2000), 9(9), 1009–1019

Sou, K., Klipper, R., Goins, B., Tsuchida, E., & Phillips, W. T. (2005). Circulation kinetics and organ distribution of Hb-vesicles developed as a red blood cell substitute. The Journal of pharmacology and experimental therapeutics, 312(2), 702–709. https://doi.org/10.1124/jpet.104.074534

Sprung, J., Kindscher, J. D., Wahr, J. A., Levy, J. H., Monk, T. G., Moritz, M. W., & O'Hara, P. J. (2002). The use of bovine hemoglobin glutamer-250 (Hemopure) in surgical patients: results of a multicenter, randomized, single-blinded trial. Anesthesia and analgesia, 94(4). https://doi.org/10.1097/00000539-200204000-00006

Stowell C. (2008). Blood substitutes: time for a deep breath. Transfusion, 48(4), 574–575. https://doi.org/10.1111/j.1537-2995.2008.01675.x

Tam, S. C., Blumenstein, J., & Wong, J. T. (1976). Soluble dextran-hemoglobin complex as a potential blood substitute. Proceedings of the National Academy of Sciences of the United States of America, 73(6), 2128–2131. https://doi.org/10.1073/pnas.73.6.2128

Tam, S. C., Blumenstein, J., & Wong, J. T. (1978). Blood replacement in dogs by dextran-hemoglobin. Canadian journal of biochemistry, 56(10), 981–984. https://doi.org/10.1139/o78-153

Tao, Z., & Ghoroghchian, P. P. (2014). Microparticle, nanoparticle, and stem cell-based oxygen carriers as advanced blood substitutes. Trends in biotechnology, 32(9), 466–473. https://doi.org/10.1016/j.tibtech.2014.05.001

Tappenden J. (2007). Artificial blood substitutes. Journal of the Royal Army Medical Corps, 153(1), 3–9. https://doi.org/10.1136/jramc-153-01-02

Thomas T.G. (1878). The intravenous injection of milk as a substitute for the transfusion of blood. New York State Journal of Medicine, 47, 449-465

Thomson, A., Farmer, S., Hofmann, A., Isbister, J., & Shander, A. (2009). Patient blood management – a new paradigm for transfusion medicine? ISBT science series, 4(n2), 423–435. https://doi.org/10.1111/j.1751-2824.2009.01251.x

Thuillier, R., Dutheil, D., Trieu, M. T., Mallet, V., Allain, G., Rousselot, M., Denizot, M., Goujon, J. M., Zal, F., & Hauet, T. (2011). Supplementation with a new therapeutic oxygen carrier reduces chronic fibrosis and organ dysfunction in kidney static preservation. American journal of transplantation: official journal of the American Society of Transplantation and the American Society of Transplant Surgeons, 11(9), 1845–1860. https://doi.org/10.1111/j.1600-6143.2011.03614.x

Tsai, A. G., Intaglietta, M., Sakai, H., Delpy, E., La Rochelle, C. D., Rousselot, M., & Zal, F. (2012). Microcirculation and NO-CO studies of a natural extracellular hemoglobin developed for an oxygen therapeutic carrier. Current drug discovery technologies, 9(3), 166–172. https://doi.org/10.2174/157016312802650814

Tsai, C. H., Fang, T. Y., Ho, N. T., & Ho, C. (2000). Novel recombinant hemoglobin, rHb (beta N108Q), with low oxygen affinity, high cooperativity, and stability against autoxidation. Biochemistry, 39(45), 13719–13729. https://doi.org/10.1021/bi001116a

Twyman, L. J., & Ge, Y. (2006). Porphyrin cored hyperbranched polymers as heme protein models. Chemical communications (Cambridge, England), (15), 1658–1660. https://doi.org/10.1039/b600831n

Twyman, L. J., Ellis, A., & Gittins, P. J. (2012). Pyridine encapsulated hyperbranched polymers as mimetic models of haeme containing proteins, that also provide interesting and unusual porphyrin-ligand geometries. Chemical communications (Cambridge, England), 48(1), 154–156. https://doi.org/10.1039/c1cc14396d

Usuba, A., Motoki, R., Ogata, Y., Suzuki, K., & Kamitani, T. (1995). Effect and safety of liposome-encapsulated hemoglobin neo red cells (NRCs) as a perfusate for total cardiopulmonary bypass. Artificial cells, blood substitutes, and immobilization biotechnology, 23(3), 337–346. https://doi.org/10.3109/10731199509117950

Varnado, C. L., Mollan, T. L., Birukou, I., Smith, B. J., Henderson, D. P., & Olson, J. S. (2013). Development of recombinant hemoglobin-based oxygen carriers. Antioxidants & redox signaling, 18(17), 2314–2328. https://doi.org/10.1089/ars.2012.4917

Vincent, J. L., Privalle, C. T., Singer, M., Lorente, J. A., Boehm, E., Meier-Hellmann, A., Darius, H., Ferrer, R., Sirvent, J. M., Marx, G., & DeAngelo, J. (2015). Multicenter, randomized, placebo-controlled phase III study of pyridoxalated hemoglobin polyoxyethylene in distributive shock (PHOENIX). Critical care medicine, 43(1), 57–64. https://doi.org/10.1097/CCM.0000000000000554

Waeterschoot, J., Gosselé, W., Lemež, Š., & Casadevall I Solvas, X. (2024). Artificial cells for in vivo biomedical applications through red blood cell biomimicry. Nature communications, 15(1), 2504. https://doi.org/10.1038/s41467-024-46732-8

Warsaw-based project to develop artificial blood could deliver innovation on a global scale. https://ec.europa.eu/regional_policy/en/projects/Poland/warsaw-based-project-to-develop-artificial-blood-could-deliver-innovation-on-a-global-scale

Waters, J.H., Lim, J.C., Blanckenberg, J.M., & Jahr, J.S. (2022). Blood Substitutes and Oxygen Biotherapeutics. Springer; Cham, Switzerland: 2022. HBOC-201: History, Clinical Trials, and Path Forward; pp. 353–360

Winslow R. M. (1995). Blood substitutes – a moving target. Nature medicine, 1(11), 1212–1215. https://doi.org/10.1038/nm1195-1212

Winslow R. M. (2002). Blood substitutes. Current opinion in hematology, 9(2), 146–151. https://doi.org/10.1097/00062752-200203000-00011

Winslow R.M. (1992). The results of 62 large-volume hemoglobin infusions in man. Hemoglobin-Based Red Cell Substitutes. Johns Hopkins University Press

Winslow R.M. (2006a). αα-Crosslinked hemoglobin. In: Winslow R.M., editor. Blood Substitutes. Academic Press

Winslow R.M. (2006b). Hemoglobin modification. In: Winslow R.M., editor. Blood Substitutes. Academic Press

Wollocko, H., Wollocko, J., Jahr, J.S., & Steier, K. (2022). OxyVita: History, Studies, and Future. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer

Xu, F., Yuan, Y., Shan, X., Liu, C., Tao, X., Sheng, Y., & Zhou, H. (2009). Long-circulation of hemoglobin-loaded polymeric nanoparticles as oxygen carriers with modulated surface charges. International journal of pharmaceutics, 377(1-2), 199–206. https://doi.org/10.1016/j.ijpharm.2009.05.015

Xu, Y., Zheng, Y., Fan, J. S., & Yang, D. (2006). A new strategy for structure determination of large proteins in solution without deuteration. Nature methods, 3(11), 931–937. https://doi.org/10.1038/nmeth938

Yu, B., Bloch, K. D., & Zapol, W. M. (2009). Hemoglobin-based red blood cell substitutes and nitric oxide. Trends in cardiovascular medicine, 19(3), 103–107. https://doi.org/10.1016/j.tcm.2009.06.004

Zal, F., Delpy, E., Jahr, J.S. (2022). M101, the Hemoglobin from the Sea: History and Therapeutic Perspectives. In: Liu H., Kaye A.D., Jahr J.S., editors. Blood Substitutes and Oxygen Biotherapeutics. Springer

Zhang, X., Lin, Y., Xin, J., Zhang, Y., Yang, K., Luo, Y., & Wang, B. (2024). Red blood cells in biology and translational medicine: natural vehicle inspires new biomedical applications. Theranostics, 14(1), 220–248. https://doi.org/10.7150/thno.87425

Zhu, K., Wang, L., Xiao, Y., Zhang, X., You, G., Chen, Y., Wang, Q., Zhao, L., Zhou, H., & Chen, G. (2024). Nanomaterial-related hemoglobin-based oxygen carriers, with emphasis on liposome and nano-capsules, for biomedical applications: current status and future perspectives. Journal of nanobiotechnology, 22(1), 336. https://doi.org/10.1186/s12951-024-02606-1

Downloads

Published

2025-04-03

How to Cite

Gradziuk М., Tkaczenko Г., & Kurhaluk Н. (2025). CHALLENGES AND OPPORTUNITIES IN ARTIFICIAL BLOOD. Biota. Human. Technology, (1), 59–93. https://doi.org/10.58407/bht.1.25.5

Issue

Section

MAN AND HIS HEALTH

Most read articles by the same author(s)

1 2 3 > >>