МАРКЕРИ ОКИСНЕННЯ ЛІПІДІВ І БІЛКІВ У КРОВІ ЖІНОК І ЧОЛОВІКІВ З АУТОІМУННИМ ТИРЕОЇДИТОМ ХАШИМОТО

Автор(и)

DOI:

https://doi.org/10.58407/bht.1.24.10

Ключові слова:

аутоімунний тиреоїдит, окиснювальний стрес, субклінічний гіпотиреоз, ТБК-активні продукти (TBARS), карбонільні похідні окиснювальної модифікації білків (ОМБ), загальна антиоксидантна активність (TAC)

Анотація

Мета: Метою даного дослідження був аналіз змін маркерів оксидативного стресу (перекисного окиснення ліпідів та окиснювальної модифікації білків), а також загальної антиоксидантної активності в крові жінок і чоловіків з аутоімунним тиреоїдитом Хашимото (АІТ).

Методологія. Це дослідження проводилося в групі 153 осіб. Група жінок, які брали участь у дослідженні, складалася з 109 осіб (71,24%), а група чоловіків – з 44 осіб (28,76%). Усіх осіб було розділено на дві групи: 1) еутиреоз (n = 64; чоловіки – n = 18, жінки – n = 46); 2) аутоімунний тиреоїдит Хашимото з субклінічним гіпотиреозом (n = 89; чоловіки – n = 26, жінки – n = 63). Функціонування щитовидної залози додатково перевіряли шляхом вимірювання концентрації тиреотропіну (ТТГ), вільного трийодтироніну (fT3), вільного тетрайодтироніну (тироксину, fT4), антитіл до тиреопероксидази (анти-ТПО). Концентрацію тиреотропіну, трийодтироніну, вільного тироксину та концентрацію антитіл проти тиреопероксидази в сироватці крові визначали електрохемілюмінесцентним методом «ECLIA» на імунологічному аналізаторі Elecsys Cobas e 411 (Hitachi, Японія). У кожній групі жінок і чоловіків з еутиреозом і аутоімунним тиреоїдитом Хашимото з субклінічним гіпотиреозом визначали у крові вміст ТБК-активних продуктів (TBARS), карбонільних похідних окиснювальної модифікації білків (OMБ), а також загальну антиоксидантну активність (TAC).

Наукова новизна. Статистично значущих змін рівнів маркерів окиснювального стресу не спостерігалося. У жінок з АІТ спостерігали підвищення рівня TBARS з одночасним підвищенням рівня TAC у плазмі та еритроцитах. Крім того, рівні альдегідних і кетонових похідних окиснювальної модифікації білків у крові жінок з АІТ були нижчими порівняно з результатами, отриманими в групі жінок з еутиреозом. У чоловіків із АІТ рівні маркерів оксидативного стресу (крім рівня ТАС у плазмі) були нижчими порівняно з такими у чоловіків із еутиреоїзом.

Висновки. Аутоімунний тиреоїдит Хашимото з субклінічним гіпотиреозом у наших дослідженнях не має прямого впливу на рівні біомаркерів окиснення ліпідів і білків. Результати, отримані в поточному дослідженні, підкреслюють необхідність майбутніх досліджень біомаркерів окиснення ліпідів і білків, особливо в залежності від тривалості цього захворювання.

Завантаження

Дані завантаження ще не доступні.

Посилання

Antonelli, A., Ferrari, S. M., Corrado, A., Di Domenicantonio, A., & Fallahi, P. (2015). Autoimmune thyroid disorders. Autoimmunity reviews, 14(2), 174–180. https://doi.org/10.1016/j.autrev.2014.10.016

Ates, I., Arikan, M. F., Altay, M., Yilmaz, F. M., Yilmaz, N., Berker, D., & Guler, S. (2018). The effect of oxidative stress on the progression of Hashimoto's thyroiditis. Archives of physiology and biochemistry, 124(4), 351–356. https://doi.org/10.1080/13813455.2017.1408660

Ates, I., Yilmaz, F. M., Altay, M., Yilmaz, N., Berker, D., & Güler, S. (2015). The relationship between oxidative stress and autoimmunity in Hashimoto's thyroiditis. European journal of endocrinology, 173(6), 791–799. https://doi.org/10.1530/EJE-15-0617

Barreiro Arcos, M. L., Gorelik, G., Klecha, A., Genaro, A. M., & Cremaschi, G. A. (2006). Thyroid hormo¬nes increase inducible nitric oxide synthase gene expression downstream from PKC-zeta in murine tumor T lymphocytes. American journal of physiology. Cell physiology, 291(2), C. 327–336. https:// doi.org/10.1152/ajpcell.00316.2005

Burton, G. J., & Jauniaux, E. (2011). Oxidative stress. Best practice & research. Clinical obstetrics & gynaecology, 25(3), 287–299. https://doi.org/10.1016/j.bpobgyn.2010.10.016

Carvalho, D. P., & Dupuy, C. (2013). Role of the NADPH Oxidases DUOX and NOX4 in Thyroid Oxidative Stress. European thyroid journal, 2(3), 160–167. https://doi.org/10.1159/000354745

Chakrabarti, S. K., Ghosh, S., Banerjee, S., Mukherjee, S., & Chowdhury, S. (2016). Oxidative stress in hypothyroid patients and the role of antioxidant supplementation. Indian journal of endocrinology and metabolism, 20(5), 674–678. https://doi.org/10.4103/2230-8210.190555

Cheserek, M. J., Wu, G. R., Ntazinda, A., Shi, Y. H., Shen, L. Y., & Le, G. W. (2015). Association Between Thyroid Hormones, Lipids and Oxidative Stress Markers in Subclinical Hypothyroidism. Journal of medical biochemistry, 34(3), 323–331. https://doi.org/10.2478/jomb-2014-0044

Dissmeyer, N., Rivas, S., & Graciet, E. (2018). Life and death of proteins after protease cleavage: protein degradation by the N-end rule pathway. The New phytologist, 218(3), 929–935. https:// doi.org/ 10.1111/nph.14619

Dubinina, E. E., Burmistrov, S. O., Khodov, D. A., & Porotov, I. G. (1995). Oxidative modification of human serum proteins. A method of determining it. Voprosy meditsinskoi khimii, 41(1), 24–26. (in Russian)

Дубинина Е. Е., Бурмистров С. О., Ходов Д. А., Поротов И.Г. Окислительная модификация белков сыво¬ротки крови человека, метод ее определения. Вопросы медицинской химии. 1995. Т. 41, № 1. С. 24-26.

Erdamar, H., Cimen, B., Gülcemal, H., Saraymen, R., Yerer, B., & Demirci, H. (2010). Increased lipid peroxidation and impaired enzymatic antioxidant defense mechanism in thyroid tissue with multinodular goiter and papillary carcinoma. Clinical biochemistry, 43(7-8), 650–654. https://doi.org/ 10.1016/j.clinbiochem.2010.02.005

Franco, J.-S., Amaya-Amaya, J., & Anaya J.-M. (2013). Thyroid disease and autoimmune diseases. In Anaya J.M., Shoenfeld Y., Rojas-Villarraga A. et al. (Eds), Autoimmunity: From Bench to Bedside (Chapter 30). El Rosario University Press. Available from: https://www.ncbi.nlm.nih.gov/books/ NBK459466/

Galaktionova, L.P., Molchanov, A.V., Elchaninova, S.A., & Varshavsky, B.Ya. (1998). Lipid peroxidation in patients with gastric and duodenal peptic ulcers. Klinicheskaia laboratornaia diagnostika, (6), 10–14. (in Russian)

Галактионова Л.П., Молчанов А.В., Ельчанинова С.А., Варшавский Б.Я. Состояние перекисного окисле¬ния у больных язвенной болезнью желудка и двенадцатиперстной кишки. Клиническая лабораторная диагностика. 1998. № 6. С. 10-14.

Grimsrud, P. A., Xie, H., Griffin, T. J., & Bernlohr, D. A. (2008). Oxidative stress and covalent modification of protein with bioactive aldehydes. The Journal of biological chemistry, 283(32), 21837–21841. https://doi.org/10.1074/jbc.R700019200

Haribabu, A., Reddy, V. S., Pallavi, C.h, Bitla, A. R., Sachan, A., Pullaiah, P., Suresh, V., Rao, P. V., & Suchitra, M. M. (2013). Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine, 44(1), 152–157. https:// doi.org/10.1007/s12020-012-9849-y

Hollowell, J. G., Staehling, N. W., Flanders, W. D., Hannon, W. H., Gunter, E. W., Spencer, C. A., & Braverman, L. E. (2002). Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). The Journal of clinical endocrinology and metabolism, 87(2), 489–499. https://doi.org/10.1210/jcem.87.2.8182

Huh, K., Kwon, T. H., Kim, J. S., & Park, J. M. (1998). Role of the hepatic xanthine oxidase in thyroid dysfunction: effect of thyroid hormones in oxidative stress in rat liver. Archives of pharmacal research, 21(3), 236–240. https://doi.org/10.1007/BF02975281

Kamel, A., & Hamouli-Said, Z. (2018). Neonatal exposure to T3 disrupts male reproductive functions by altering redox homeostasis in immature testis of rats. Andrologia, 50(9), e13082. https://doi.org/ 10.1111/and.13082

Kamyshnikov, V. S. (2004). A reference book on clinical and biochemical research and laboratory diagnostics (2nd ed.). MEDpress-inform. (in Russian)

Камышников В.С. Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. Москва: Изд. «МЕДпресс-информ», 2004. 920 с.

Khan, F. A., Al-Jameil, N., Khan, M. F., Al-Rashid, M., & Tabassum, H. (2015). Thyroid dysfunction: an autoimmune aspect. International journal of clinical and experimental medicine, 8(5), 6677–6681.

Kochman, J., Jakubczyk, K., Bargiel, P., & Janda-Milczarek, K. (2021). The Influence of Oxidative Stress on Thyroid Diseases. Antioxidants (Basel, Switzerland), 10(9), 1442. https://doi.org/10.3390/ antiox10091442

Kristensen, B. (2016). Regulatory B and T cell responses in patients with autoimmune thyroid disease and healthy controls. Danish medical journal, 63(2), B5177.

Lanni, A., Moreno, M., Lombardi, A., & Goglia, F. (2003). Thyroid hormone and uncoupling proteins. FEBS letters, 543(1-3), 5–10. https://doi.org/10.1016/s0014-5793(03)00320-x

Levine, R. L., Garland, D., Oliver, C. N., Amici, A., Climent, I., Lenz, A. G., Ahn, B. W., Shaltiel, S., & Stadtman, E. R. (1990). Determination of carbonyl content in oxidatively modified proteins. Methods in enzymology, 186, 464–478. https://doi.org/10.1016/0076-6879(90)86141-h

Lobo, V., Patil, A., Phatak, A., & Chandra, N. (2010). Free radicals, antioxidants and functional foods: Impact on human health. Pharmacognosy reviews, 4(8), 118–126. https://doi.org/10.4103/0973-7847.70902

Mancini, A., Di Segni, C., Raimondo, S., Olivieri, G., Silvestrini, A., Meucci, E., & Currò, D. (2016). Thyroid Hormones, Oxidative Stress, and Inflammation. Mediators of inflammation, 2016, 6757154. https://doi.org/10.1155/2016/6757154

Marrocco, I., Altieri, F., & Peluso, I. (2017). Measurement and Clinical Significance of Biomarkers of Oxidative Stress in Humans. Oxidative medicine and cellular longevity, 2017, 6501046. https:// doi.org/10.1155/2017/6501046

Mikoś, H., Mikoś, M., Obara-Moszyńska, M., & Niedziela, M. (2014). The role of the immune system and cytokines involved in the pathogenesis of autoimmune thyroid disease (AITD). Endokrynologia Polska, 65(2), 150–155. https://doi.org/10.5603/EP.2014.0021

Mikulska, A. A., Karaźniewicz-Łada, M., Filipowicz, D., Ruchała, M., & Główka, F. K. (2022). Metabolic Characteristics of Hashimoto's Thyroiditis Patients and the Role of Microelements and Diet in the Disease Management – An Overview. International journal of molecular sciences, 23(12), 6580. https://doi.org/10.3390/ijms23126580

Morawska, K., Maciejczyk, M., Popławski, Ł., Popławska-Kita, A., Kretowski, A., & Zalewska, A. (2020). Enhanced Salivary and General Oxidative Stress in Hashimoto's Thyroiditis Women in Euthyreosis. Journal of clinical medicine, 9(7), 2102. https://doi.org/10.3390/jcm9072102

Nekrasova, T. A., Shcherbatyuk, T. G., Davydenko, D. V., Ledentsova, O. V., & Strongin, L. G. (2011). Peculiarities of lipid and protein peroxidation in autoimmune thyroiditis with and without mild thyroid dysfunction. Clinical and experimental thyroidology, 7(4):38-43. (in Russian)

Некрасова Т. А., Щербатюк Т. Г., Давыденко Д. В., Леденцова О. В., Стронгин Л. Г. Особенности перекисного окисления липидов и белков при аутоиммунном тиреоидите с легкой степенью нарушения функции щитовидной железы и без нее. Клиническая и экспериментальная тиреоидология. 2011. Вып.7, №4. С. 38-43.

Ohye, H., & Sugawara, M. (2010). Dual oxidase, hydrogen peroxide and thyroid diseases. Experimental biology and medicine (Maywood, N.J.), 235(4), 424–433. https://doi.org/10.1258/ebm.2009.009241

Öztürk, Ü., Vural, P., Özderya, A., Karadağ, B., Doğru-Abbasoğlu, S., & Uysal, M. (2012). Oxidative stress parameters in serum and low density lipoproteins of Hashimoto's thyroiditis patients with subclinical and overt hypothyroidism. International immunopharmacology, 14(4), 349–352. https://doi.org/10.1016/j.intimp.2012.08.010

Papadopoulou, A. M., Bakogiannis, N., Skrapari, I., Moris, D., & Bakoyiannis, C. (2020). Thyroid Dysfunction and Atherosclerosis: A Systematic Review. In vivo (Athens, Greece), 34(6), 3127–3136. https://doi.org/10.21873/invivo.12147

Phaniendra, A., Jestadi, D. B., & Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. Indian journal of clinical biochemistry: IJCB, 30(1), 11–26. https://doi.org/10.1007/s12291-014-0446-0

Ralli, M., Angeletti, D., Fiore, M., D'Aguanno, V., Lambiase, A., Artico, M., de Vincentiis, M., & Greco, A. (2020). Hashimoto's thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmunity reviews, 19(10), 102649. https://doi.org/10.1016/j.autrev.2020.102649

Rocchi, R., Rose, N.R., & Caturegli, P. (2008). Hashimoto Thyroiditis. In: Shoenfeld Y., Cervera R., & Gershwin M.E. (Eds.), Diagnostic Criteria in Autoimmune Diseases (pp. 217–220). Humana Press.

Rovcanin, B. R., Gopcevic, K. R., Kekic, D. L.j, Zivaljevic, V. R., Diklic, A. D.j, & Paunovic, I. R. (2016). Papillary Thyroid Carcinoma: A Malignant Tumor with Increased Antioxidant Defense Capacity. The Tohoku journal of experimental medicine, 240(2), 101–111. https://doi.org/10.1620/tjem.240.101

Ruggeri, R. M., Giovinazzo, S., Barbalace, M. C., Cristani, M., Alibrandi, A., Vicchio, T. M., Giuffrida, G., Aguennouz, M. H., Malaguti, M., Angeloni, C., Trimarchi, F., Hrelia, S., Campennì, A., & Cannavò, S. (2021). Influence of Dietary Habits on Oxidative Stress Markers in Hashimoto's Thyroiditis. Thyroid: official journal of the American Thyroid Association, 31(1), 96–105. https://doi.org/10.1089/thy. 2020.0299

Rybakova, A. A., Platonova, N. M., & Troshina, E. A. (2020). Oxidative stress and its role in the deve-lopment of autoimmune thyroid diseases. Problems of Endocrinology, 65(6), 451–457. https://doi.org/ 10.14341/probl11827 (in Russian)

Рыбакова А.А., Платонова Н.М., Трошина Е.А. Оксидативный стресс и его роль в развитии ауто-иммунных заболеваний щитовидной железы. Проблемы эндокринологии. 2020. Вып. 65, №6. С. 451-457.

Santi, A., Duarte, M. M., de Menezes, C. C., & Loro, V. L. (2012). Association of lipids with oxidative stress biomarkers in subclinical hypothyroidism. International journal of endocrinology, 2012, 856359. https://doi.org/10.1155/2012/856359

Szanto, I., Pusztaszeri, M., & Mavromati, M. (2019). H2O2 Metabolism in Normal Thyroid Cells and in Thyroid Tumorigenesis: Focus on NADPH Oxidases. Antioxidants (Basel, Switzerland), 8(5), 126. https://doi.org/10.3390/antiox8050126

Tapia, G., Fernández, V., Varela, P., Cornejo, P., Guerrero, J., & Videla, L. A. (2003). Thyroid hormone-induced oxidative stress triggers nuclear factor-kappaB activation and cytokine gene expression in rat liver. Free radical biology & medicine, 35(3), 257–265. https://doi.org/10.1016/s0891-5849(03) 00209-0

Torun, A. N., Kulaksizoglu, S., Kulaksizoglu, M., Pamuk, B. O., Isbilen, E., & Tutuncu, N. B. (2009). Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clinical endocrinology, 70(3), 469–474. https://doi.org/10.1111/j.1365-2265.2008.03348.x

Venditti, P., Balestrieri, M., Di Meo, S., & De Leo, T. (1997). Effect of thyroid state on lipid peroxidation, antioxidant defences, and susceptibility to oxidative stress in rat tissues. The Journal of endocrinology, 155(1), 151–157. https://doi.org/10.1677/joe.0.1550151

Venditti, P., Daniele, M. C., Masullo, P., & Di Meo, S. (1999). Antioxidant-sensitive triiodothyronine effects on characteristics of rat liver mitochondrial population. Cellular physiology and biochemistry: international journal of experimental cellular physiology, biochemistry, and pharmacology, 9(1), 38–52. https://doi.org/10.1159/000016301

Villanueva, I., Alva-Sánchez, C., & Pacheco-Rosado, J. (2013). The role of thyroid hormones as inductors of oxidative stress and neurodegeneration. Oxidative medicine and cellular longevity, 2013, 218145. https://doi.org/10.1155/2013/218145

Zamoner, A., Barreto, K. P., Filho, D. W., Sell, F., Woehl, V. M., Guma, F. C., Silva, F. R., & Pessoa-Pureur, R. (2007). Hyperthyroidism in the developing rat testis is associated with oxidative stress and hyperphosphorylated vimentin accumulation. Molecular and cellular endocrinology, 267(1-2), 116–126. https://doi.org/10.1016/j.mce.2007.01.005

Zaninovich, A. A. (2005). Role of uncoupling proteins UCP1, UCP2 and UCP3 in energy balance, type 2 diabetes and obesity. Synergism with the thyroid. Medicine, 65(2), 163–169.

Занинович А. А. Роль разобщающих белков UCP1, UCP2 и UCP3 в энергетическом балансе, диабете 2 типа и ожирении. Синергизм с щитовидной железой. Медицина. 2005. Вып. 65, №2. С. 163-169.

Zar, J.H. (1999). Biostatistic Analysis. 4th ed. Prentice Hall Inc.

Zimmermann, M. B., & Boelaert, K. (2015). Iodine deficiency and thyroid disorders. The lancet. Diabetes & endocrinology, 3(4), 286–295. https://doi.org/10.1016/S2213-8587(14)70225-6

Downloads

Опубліковано

20.05.2024

Номер

Розділ

ЛЮДИНА ТА ЇЇ ЗДОРОВ'Я