THE INFLUENCE OF PHYSICAL ACTIVITY, SMOKING, MYOCARDIAL INFARCTION AND DIABETES IN FAMILY HISTORY ON THE LEVEL OF LIPID PEROXIDATION MARKERS IN THE BLOOD OF WOMEN AND MEN WITH MYOCARDIAL INFARCTION AND TYPE 2 DIABETES
DOI:
https://doi.org/10.58407/bht.3.23.8Keywords:
myocardial infarction, type 2 diabetes, lipid peroxidation, 2-thiobarbituric acid reactive substances (TBARS), females, males, physical activity, smokingAbstract
Oxidative stress is associated with many chronic diseases, especially diabetes and heart disease. So far, many studies have focused on evaluating the various relations between oxidative stress and diabetes and cardiovascular diseases separately, but few studies are looking at both diseases simultaneously. The impact of lifestyle on oxidative stress in individuals with diabetes-related cardiovascular diseases is also still unclear.
Purpose: Paying attention to the actuality of the issue, the objective of our study was to assess the relationship between the levels of oxidative stress markers in individuals with multiple myocardial infarctions and type 2 diabetes, depending on physical activity, smoking, and the presence of myocardial infarctions and diabetes in the family anamnesis.
Methodology. The criteria for inclusion in the study were individuals with type 2 diabetes with a duration of at least 10 years, individuals with type 2 diabetes who had at least two myocardial infarcts, and healthy individuals (the control group of different genders), aged 35-71 years old. In the collected venous blood, the level of lipid peroxidation (concentration of 2-thiobarbituric acid reacting substances) was assessed.
Scientific novelty. Assessing changes in the levels of oxidative stress markers, i.e. lipid peroxidation (TBARS), in the blood of individuals of different gender and ages with myocardial infarcts, type 2 diabetes, as well as type 2 diabetes and myocardial infarcts and depending on lifestyle, we observed a significant increase in the TBARS levels in both individuals with type 2 diabetes, myocardial infarcts, as well as type 2 diabetes and myocardial infarcts. Our research showed that the level of lipid peroxidation increased regardless of the level of physical activity, both in individuals with myocardial infarcts, type 2 diabetes, as well as myocardial infarcts and type 2 diabetes.
Conclusions. The level of lipid peroxidation was increased in individuals with myocardial infarcts, type 2 diabetes, and myocardial infarcts and type 2 diabetes, regardless of whether the individuals smoked cigarettes or not. The presence of myocardial infarcts in the family may be a factor that affects the level of lipid peroxidation in individuals with diabetes and individuals with both myocardial infarcts and type 2 diabetes. The presence of diabetes in the family may be an additional factor in generating oxidative stress in type 2 diabetes.
Downloads
References
Al-Rawi N. H. (2011). Oxidative stress, antioxidant status and lipid profile in the saliva of type 2 diabetics. Diabetes & vascular disease research, 8(1), 22–28. https://doi.org/10.1177/1479164110390243
Al-Salameh, A., Chanson, P., Bucher, S., Ringa, V., & Becquemont, L. (2019). Cardiovascular Disease in Type 2 Diabetes: A Review of Sex-Related Differences in Predisposition and Prevention. Mayo Clinic proceedings, 94(2), 287–308. https://doi.org/10.1016/j.mayocp.2018.08.007
Aouacheri, O., Saka, S., Krim, M., Messaadia, A., & Maidi, I. (2015). The investigation of the oxidative stress-related parameters in type 2 diabetes mellitus. Canadian journal of diabetes, 39(1), 44–49. https://doi.org/10.1016/j.jcjd.2014.03.002
Bagatini, M. D., Martins, C. C., Battisti, V., Gasparetto, D., da Rosa, C. S., Spanevello, R. M., Ahmed, M., Schmatz, R., Schetinger, M. R., & Morsch, V. M. (2011). Oxidative stress versus antioxidant defenses in patients with acute myocardial infarction. Heart and vessels, 26(1), 55–63. https://doi.org/10.1007/s00380-010-0029-9
Braunwald, E. (2008). Biomarkers in heart failure. The New England journal of medicine, 358(20), 2148–2159. https://doi.org/10.1056/NEJMra0800239
Chaudhary, R., Likidlilid, A., Peerapatdit, T., Tresukosol, D., Srisuma, S., Ratanamaneechat, S., & Sriratanasathavorn, C. (2012). Apolipoprotein E gene polymorphism: effects on plasma lipids and risk of type 2 diabetes and coronary artery disease. Cardiovascular diabetology, 11, 36. https://doi.org/10.1186/1475-2840-11-36
Cheng, S., Rhee, E. P., Larson, M. G., Lewis, G. D., McCabe, E. L., Shen, D., Palma, M. J., Roberts, L. D., Dejam, A., Souza, A. L., Deik, A. A., Magnusson, M., Fox, C. S., O'Donnell, C. J., Vasan, R. S., Melander, O., Clish, C. B., Gerszten, R. E., & Wang, T. J. (2012). Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation, 125(18), 2222–2231. https://doi.org/10.1161/CIRCULATIONAHA.111.067827
Colledge N.R., Walker, B.R., Ralston, S., Davidson, S., Penman, I. (ed.). (2010). Davidson's Principles and Practice of Medicine. Edinburgh: Churchill Livingstone/Elsevier., 18: 1153-1216
Dalle-Donne, I., Rossi, R., Colombo, R., Giustarini, D., & Milzani, A. (2006). Biomarkers of oxidative damage in human disease. Clinical chemistry, 52(4), 601–623. https://doi.org/10.1373/clinchem.2005.061408
De Berardinis, R. J., & Cheng, T. (2010). Q's next: the diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29(3), 313–324. https://doi.org/10.1038/onc.2009.358
De Rosa, S., Arcidiacono, B., Chiefari, E., Brunetti, A., Indolfi, C., & Foti, D. P. (2018). Type 2 Diabetes Mellitus and Cardiovascular Disease: Genetic and Epigenetic Links. Frontiers in endocrinology, 9, 2. https://doi.org/10.3389/fendo.2018.00002
de Souza Bastos, A., Graves, D. T., de Melo Loureiro, A. P., Júnior, C. R., Corbi, S. C. T., Frizzera, F., Scarel-Caminaga, R. M., Câmara, N. O., Andriankaja, O. M., Hiyane, M. I., & Orrico, S. R. P. (2016). Diabetes and increased lipid peroxidation are associated with systemic inflammation even in well-controlled patients. Journal of diabetes and its complications, 30(8), 1593–1599. https://doi.org/10.1016/j.jdiacomp.2016.07.011
El-Lebedy, D., Raslan, H. M., & Mohammed, A. M. (2016). Apolipoprotein E gene polymorphism and risk of type 2 diabetes and cardiovascular disease. Cardiovascular diabetology, 15, 12. https://doi.org/10.1186/s12933-016-0329-1
Everett, B. M., Brooks, M. M., Vlachos, H. E., Chaitman, B. R., Frye, R. L., Bhatt, D. L., & BARI 2D Study Group (2015). Troponin and Cardiac Events in Stable Ischemic Heart Disease and Diabetes. The New England journal of medicine, 373(7), 610–620. https://doi.org/10.1056/NEJMoa1415921
Fiorentino, T.V., Prioletta, A., Zuo, P., & Folli, F. (2013). Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Current pharmaceutical design, 19(32), 5695–5703. https://doi.org/10.2174/1381612811319320005
Frostegård, J. (2013). Immunity, atherosclerosis and cardiovascular disease. BMC medicine, 11, 117. https://doi.org/10.1186/1741-7015-11-117
Giacco, F., & Brownlee, M. (2010). Oxidative stress and diabetic complications. Circulation research, 107(9), 1058–1070. https://doi.org/10.1161/CIRCRESAHA.110.223545
Goodarzi, M. T., Varmaziar, L., Navidi, A. A., & Parivar, K. (2008). Study of oxidative stress in type 2 diabetic patients and its relationship with glycated hemoglobin. Saudi medical journal, 29(4), 503–506.
Henning R. J. (2018). Type-2 diabetes mellitus and cardiovascular disease. Future cardiology, 14(6), 491–509. https://doi.org/10.2217/fca-2018-0045
Jaxa-Chamiec, T., Bednarz, B., Herbaczynska-Cedro, K., Maciejewski, P., Ceremuzynski, L., & MIVIT Trial Group (2009). Effects of vitamins C and E on the outcome after acute myocardial infarction in diabetics: a retrospective, hypothesis-generating analysis from the MIVIT study. Cardiology, 112(3), 219–223. https://doi.org/10.1159/000151239
Johansson, I., Dahlström, U., Edner, M., Näsman, P., Rydén, L., & Norhammar, A. (2015). Risk factors, treatment and prognosis in men and women with heart failure with and without diabetes. Heart (British Cardiac Society), 101(14), 1139–1148. https://doi.org/10.1136/heartjnl-2014-307131
Kalogeris, T., Bao, Y., & Korthuis, R. J. (2014). Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox biology, 2, 702–714. https://doi.org/10.1016/j.redox.2014.05.006
Kamyshnikov, V. S. (2004). Reference book on clinic and biochemical researches and laboratory diagnostics. MEDpress-inform. (in Russian)
Камышников В.С. Справочник по клинико-биохимическим исследованиям и лабораторной диагностике. Москва: МЕДпресс-информ, 2004. 920 с.
Kander, M. C., Cui, Y., & Liu, Z. (2017). Gender difference in oxidative stress: a new look at the mechanisms for cardiovascular diseases. Journal of cellular and molecular medicine, 21(5), 1024–1032. https://doi.org/10.1111/jcmm.13038
Kashinakunti, S. V., Kollur, P., Kallaganada, G. S., Rangappa, M., & Ingin, J. B. (2011). Comparative study of serum MDA and vitamin C levels in non-smokers, chronic smokers and chronic smokers with acute myocardial infarction in men. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 16(8), 993–998.
Khaki-Khatibi, F., Yaghoubi, A.R., & Rahbani, N.M. (2012). Study of antioxidant enzymes, lipid peroxidation, lipid profile and immunologic factor in coronary artery disease in East Azarbijan. International Journal of Medicine and Biomedical Research, 1(2), 147–152.
Khullar, M., Al-Shudiefat, A. A., Ludke, A., Binepal, G., & Singal, P. K. (2010). Oxidative stress: a key contributor to diabetic cardiomyopathy. Canadian journal of physiology and pharmacology, 88(3), 233–240. https://doi.org/10.1139/Y10-016
Kitano, D., Takayama, T., Nagashima, K., Akabane, M., Okubo, K., Hiro, T., & Hirayama, A. (2016). A comparative study of time-specific oxidative stress after acute myocardial infarction in patients with and without diabetes mellitus. BMC cardiovascular disorders, 16, 102. https://doi.org/10.1186/s12872-016-0259-6
Knapp, M., Tu, X., & Wu, R. (2019). Vascular endothelial dysfunction, a major mediator in diabetic cardiomyopathy. Acta pharmacologica Sinica, 40(1), 1–8. https://doi.org/10.1038/s41401-018-0042-6
Kumawat, M., Sharma, T. K., Singh, I., Singh, N., Singh, S. K., Ghalaut, V. S., Shankar, V., & Vardey, S. K. (2012). Decrease in antioxidant status of plasma and erythrocytes from geriatric population. Disease markers, 33(6), 303–308. https://doi.org/10.3233/DMA-2012-00938
Kurian, G. A., Rajagopal, R., Vedantham, S., & Rajesh, M. (2016). The Role of Oxidative Stress in Myocardial Ischemia and Reperfusion Injury and Remodeling: Revisited. Oxidative medicine and cellular longevity, 2016, 1656450. https://doi.org/10.1155/2016/1656450
Lane, J. S., Magno, C. P., Lane, K. T., Chan, T., Hoyt, D. B., & Greenfield, S. (2008). Nutrition impacts the prevalence of peripheral arterial disease in the United States. Journal of vascular surgery, 48(4), 897–904. https://doi.org/10.1016/j.jvs.2008.05.014
Li, C., Miao, X., Li, F., Wang, S., Liu, Q., Wang, Y., & Sun, J. (2017). Oxidative Stress-Related Mechanisms and Antioxidant Therapy in Diabetic Retinopathy. Oxidative medicine and cellular longevity, 2017, 9702820. https://doi.org/10.1155/2017/9702820
Lomivorotov, V. V., Efremov, S. M., Shmirev, V. A., Ponomarev, D. N., Lomivorotov, V. N., & Karaskov, A. M. (2011). Glutamine is cardioprotective in patients with ischemic heart disease following cardiopulmonary bypass. The heart surgery forum, 14(6), E384–E388. https://doi.org/10.1532/HSF98.20111074
Lu, S.C. (2013). Glutathione synthesis. Biochimica et biophysica acta, 1830(5), 3143–3153. https://doi.org/10.1016/j.bbagen.2012.09.008
Ma R. C. (2016). Genetics of cardiovascular and renal complications in diabetes. Journal of diabetes investigation, 7(2), 139–154. https://doi.org/10.1111/jdi.12391
Maas, A. H., & Appelman, Y. E. (2010). Gender differences in coronary heart disease. Netherlands heart journal : monthly journal of the Netherlands Society of Cardiology and the Netherlands Heart Foundation, 18(12), 598–602. https://doi.org/10.1007/s12471-010-0841-y
Madonna, R., Balistreri, C. R., De Rosa, S., Muscoli, S., Selvaggio, S., Selvaggio, G., Ferdinandy, P., & De Caterina, R. (2019). Impact of Sex Differences and Diabetes on Coronary Atherosclerosis and Ischemic Heart Disease. Journal of clinical medicine, 8(1), 98. https://doi.org/10.3390/jcm8010098
Messner, B., & Bernhard, D. (2014). Smoking and cardiovascular disease: mechanisms of endothelial dysfunction and early atherogenesis. Arteriosclerosis, thrombosis, and vascular biology, 34(3), 509–515. https://doi.org/10.1161/ATVBAHA.113.300156
Metta, S., Basalingappa, D. R., Uppala, S., & Mitta, G. (2015). Erythrocyte Antioxidant Defenses Against Cigarette Smoking in Ischemic Heart Disease. Journal of clinical and diagnostic research: JCDR, 9(6), BC08–BC11. https://doi.org/10.7860/JCDR/2015/12237.6128
Mushtaq, S., Ali, T., Altaf, F., Abdullah, M., & Murtaza, I. (2015). Stress-responsive factor regulation in patients suffering from type 2 diabetes and myocardial infarction. Turkish journal of medical sciences, 45(1), 148–152. https://doi.org/10.3906/sag-1308-25
Nair, A., & Nair, B. J. (2017). Comparative analysis of the oxidative stress and antioxidant status in type II diabetics and nondiabetics: A biochemical study. Journal of oral and maxillofacial pathology: JOMFP, 21(3), 394–401. https://doi.org/10.4103/jomfp.JOMFP_56_16
Naskręt, D., Araszkiewicz, A., & Wierusz-Wysocka, B. (2013). Choroba niedokrwienna u pacjenta z cukrzycą [Ischemic disease in a patient with diabetes]. Forum Medycyny Rodzinnej, 7(3), 109–114.
Newsholme, P., & Krause, M. (2012). Nutritional regulation of insulin secretion: implications for diabetes. The Clinical biochemist. Reviews, 33(2), 35–47.
Obońska, K., Grąbczewska, Z., Fisz, J., Kubica, J. (2011). Cukrzyca i dysfunkcja śródbłonka – krótkie spojrzenie na złożony problem [Diabetes and endothelial dysfunction – a brief look at a complex problem]. Folia Cardiologica Excerpta, 2, 109–116.
Pfister, R., Barnes, D., Luben, R. N., Khaw, K. T., Wareham, N. J., & Langenberg, C. (2011). Individual and cumulative effect of type 2 diabetes genetic susceptibility variants on risk of coronary heart disease. Diabetologia, 54(9), 2283–2287. https://doi.org/10.1007/s00125-011-2206-5
Qi, L., Qi, Q., Prudente, S., Mendonca, C., Andreozzi, F., di Pietro, N., Sturma, M., Novelli, V., Mannino, G. C., Formoso, G., Gervino, E. V., Hauser, T. H., Muehlschlegel, J. D., Niewczas, M. A., Krolewski, A. S., Biolo, G., Pandolfi, A., Rimm, E., Sesti, G., Trischitta, V., … Doria, A. (2013). Association between a genetic variant related to glutamic acid metabolism and coronary heart disease in individuals with type 2 diabetes. JAMA, 310(8), 821–828. https://doi.org/10.1001/jama.2013.276305
Santilli, F., Lapenna, D., La Barba, S., & Davì, G. (2015). Oxidative stress-related mechanisms affecting response to aspirin in diabetes mellitus. Free radical biology & medicine, 80, 101–110. https://doi.org/10.1016/j.freeradbiomed.2014.12.010
Sena, C. M., Pereira, A. M., & Seiça, R. (2013). Endothelial dysfunction – a major mediator of diabetic vascular disease. Biochimica et biophysica acta, 1832(12), 2216–2231. https://doi.org/10.1016/j.bbadis.2013.08.006
Shahid, S. U., Shabana, & Humphries, S. (2018). The SNP rs10911021 is associated with oxidative stress in coronary heart disease patients from Pakistan. Lipids in health and disease, 17(1), 6. https://doi.org/10.1186/s12944-017-0654-8
Sufit, A., Weitzel, L. B., Hamiel, C., Queensland, K., Dauber, I., Rooyackers, O., & Wischmeyer, P. E. (2012). Pharmacologically dosed oral glutamine reduces myocardial injury in patients undergoing cardiac surgery: a randomized pilot feasibility trial. JPEN. Journal of parenteral and enteral nutrition, 36(5), 556–561. https://doi.org/10.1177/0148607112448823
Yan, S. F., Ramasamy, R., & Schmidt, A. M. (2010). The RAGE axis: a fundamental mechanism signaling danger to the vulnerable vasculature. Circulation research, 106(5), 842–853. https://doi.org/10.1161/CIRCRESAHA.109.212217
Yildirim, Z., Yildirim, F., Ucgun, N. I., & Kilic, N. (2009). The evaluation of the oxidative stress parameters in nondiabetic and diabetic senile cataract patients. Biological trace element research, 128(2), 135–143. https://doi.org/10.1007/s12011-008-8258-9
Yin, X., Zheng, Y., Liu, Q., Cai, J., & Cai, L. (2012). Cardiac response to chronic intermittent hypoxia with a transition from adaptation to maladaptation: the role of hydrogen peroxide. Oxidative medicine and cellular longevity, 2012, 569520. https://doi.org/10.1155/2012/569520
Zar, J. H. (1999). Biostatistic Analysis. 4th ed., Prentice Hall Inc.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Наталія Кургалюк, Кшиштоф Тота, Малгожата Дубік-Тота, Галина Ткаченко
This work is licensed under a Creative Commons Attribution 4.0 International License.