ARABIDOPSIS THALIANA (L.) HEYNH. AS A MODEL OBJECT OF ENVIRONMENTAL RESEARCH

Authors

DOI:

https://doi.org/10.58407/bht.3.23.6

Keywords:

Arabidopsis thaliana (L.) Heynh., concept, operational biomonitoring

Abstract

Purpose of the work. To substantiate the advantages of using Arabidopsis thaliana (L.) Heynh. in the system of operational biomonitoring for environmental emergency zones.

Methodology research was based on general scientific methods (generalization, comparison, analysis and synthesis, theoretical and methodological substantiation).

Scientific novelty. The concept of operational biomonitoring is proposed, which can be conventionally called drosophila, since there are two types of Drosophila in the center. One plant is Arabidopsis thaliana, the other is classic Drosophila melanogaster. Both species have similar life characteristics, small size, unpretentiousness in maintenance and a wide variety of mutant forms, the genome is sequenced and annotated. The objectivity of the parallelism between these two species has been confirmed. Benefits shown A. thaliana and D. melanogaster as convenient models for testing the effects of pollutants on the body.

Conclusions. The main component of the systematic analysis of the natural environment is informationally significant indicators of the variability of signs that are easily diagnosed. Operational biomonitoring is aimed at quick and accurate diagnosis of the ecological situation and can be promising in territories dangerous for the long-term stay of the environmental researcher.

The concept of operational biomonitoring, which is conventionally called Drosophila concept, involves the Arabidopsis thaliana and Drosophila melanogaster use. They have small size, unpretentiousness in maintenance and a large variety of mutant forms, the genome is sequenced and annotated, as models for testing the pollutants impact on a living organism.

Arabidopsis thaliana meets the criterion of well-characterized model organisms and is one of the best experimental systems for studying various processes. A. thaliana is a useful model for studying gravitropism, genetics, genomics, and operational monitoring. Unlike animal model organisms, for which line maintenance often involves continuous ongoing work, the seeds of this model organism can be stored for long periods of time. The depth of understanding and ease of manipulation in the Arabidopsis system is unparalleled, and this plant will remain a reference plant for the foreseeable future.

Downloads

Download data is not yet available.

References

Andalo, C., Raquin, C., Machon, N., Godelle, B., & Mousseau, M. (1998). Direct and Maternal Effects of Elevated CO2 on Early Root Growth of Germinating Arabidopsis thaliana Seedlings. Annals of Botany, 81(3), 405-411. https://doi.org/10.1006/anbo.1997.0574

Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature, 408, 796–815. https://doi.org/10.1038/35048692

Arany, A. M., de Jong, T. J., & van der Meijden, E. (2005). Herbivory and abiotic factors affect population dynamics of Arabidopsis thaliana in a sand dune area. Plant Biol., 7, 549–556. https://doi.org/10.1055/s-2005-865831

Azaiez, A., Bouchard, E.F., Jean, M., & Belzile, F.J. (2006). Length, orientation, and plant host influence the mutation frequency in microsatellites. Genome, 49(11), 1366-73. https://doi.org/10.1139/g06-099

Badre, N.H., Martin, M.E., & Cooper, R.L. (2005). The physiological and behavioral effects of carbon dioxide on Drosophila melanogaster larvae. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 140(3), 363-376. https://doi.org/10.1016/j.cbpb.2005.01.019

Boron, A. K., & Vissenberg, K. (2014). The Arabidopsis thaliana hypocotyl, a model to identify and study control mechanisms of cellularexpansion. Plant Cell Reports, 33, 697–706 https://doi.org/10.1007/s00299-014-1591-x

Calap-Quintana, P., González-Fernández, J., Sebastiá-Ortega, N., Llorens, J., & Moltó, M.D. (2017). Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int. J. Mol. Sci., 18(7), 1456-1466. https://doi.org/10.3390/ijms18071456

Cheng, C. Y., Krishnakumar, V., Chan, A. P., Thibaud-Nissen, F., Schobel, S., & Town, Ch. D. (2017). Araport11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J., 89, 789-804.

Christophe, A., Janraquin, C., Machon, N., Godelle, B., & Mousseau, M. (1998). Direct and Maternal Effects of Elevated CO2 on Early Root Growth of Germinating Arabidopsis thaliana Seedlings. Annals of Botany, 81, 405-411 https://doi.org/10.1006/anbo.1997.0574

Colinet, H., & Renault, D. (2012). Metabolic effects of CO2 anesthesia in Drosophila melanogaster. Biology Letters, 8(6), 1050-1054. https://doi.org/10.1098%2Frsbl.2012.0601

Eljebbawi, A. (2021). Arabidopsis thaliana: un modèle pour étudier les adaptations thermique et saline des plantes dans les Pyrénées. [Doctoral Thesis, Université Toulouse]. URL: https://www.theses.fr/2021TOU30189

Hines, G., Modavi, C., Jiang, K., Packard, A., Poolla, K., & Feldman, L. (2015). Tracking transience: A method for dynamic monitoring of biological events in Arabidopsis thaliana biosensors. Planta, 242(5), 1251-1261. https://doi.org/10.1007/s00425-015-2393-2

Ilnytskyy, Y., Boyko, A., & Kovalchuk, I. (2004). Luciferase-based transgenic recombination assay is more sensitive than β-glucoronidase-based. Mutation Research / Genetic Toxicology and Environmental Mutagenesis, 559(1-2), 189-197. https://doi.org/10.1016/j.mrgentox.2004.02.001

Inamdar, A.A., Zaman, T., Morath, S.U., Pu, D.C., & Bennett, J.W. (2014). Drosophila melanogaster as a model to characterize fungal volatile organic compounds. Environ. Toxicol., 29(7), 829-836. https://doi.org/10.1002/tox.21825

Jonak, C., Nakagami, H., & Hirt, H. (2004). Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant physiology, 136(2), 3276-3283. https://doi.org/10.1104/pp.104.045724

Kovalchuk, I., & Kovalchuk, O. (2008). Transgenic Plants as Sensors of Environmental Pollution Genotoxicity. Sensors (Basel). 8(3): 1539-1558. https://doi.org/10.3390%2Fs8031539

Kovalchuk, I., Kovalchuk, O., Arkhipov, A., & Hohn, B. (1998). Transgenic plants are sensitive bioindicators of nuclear pollution caused by the Chernobyl accident. Nat. Biotechnology, 16(11), 1054-1059. https://doi.org/10.1038/3505

Kovalchuk, I., Kovalchuk, O., & Hohn, B. (2000). Genome-wide variation of the somatic mutation frequency in transgenic plants. EMBO J., 19(17), 4431-4438. https://doi.org/10.1093/emboj/19.17.4431

Kovalchuk, O., Kovalchuk, I., Titov, V., Arkhipov, A., & Hohn, B. (1999). Radiation hazard caused by the Chernobyl accident in inhabited areas of Ukraine can be monitored by transgenic plants. Mutat. Res., 446(1), 49-55. https://doi.org/10.1016/s1383-5718(99)00147-3

Kovalchuk, O., Telyuk, P., Kovalchuk, L., Kovalchuk, I., & Titov, V. (2003) Novel plant bioassays for monitoring the genotoxicity of drinking water from the inhabited areas of the Ukraine affected by the Chernobyl accident. Bull. Environ. Contam. Toxicol., 70(5), 847-853. https://doi.org/10.1007/s00128-003-0060-y

Kovalchuk, O., Titov, V., Hohn, B., & Kovalchuk, I. (2001). A sensitive transgenic plant system to detect toxic inorganic compounds in the environment. Nat. Biotechnol., 19(6), 568-572. https://doi.org/10.1038/89327

Kovalchuk, O., Dubrova, Y., Arkhipov, A., Hohn, B., & Kovalchuk, I. (2000). Wheat DNA mutation rate after Chernobyl. Nature, 407(6804), 583-584. https://doi.org/10.1038/35036692

Kovalchuk, І., Kovalchuk, O., & Hohn, B. (2001). Biomonitoring the genotoxicity of environmental with transgenic plants. Trends in Plant Science, 6(7), 306-310. https://doi.org/10.1016/s1360-1385(01)01985-9

Kovalchuk, L.E. (2018). The use of transgenic plants Arabidopsis thaliana as markers of environmental contamination with radionuclides (“Biological Geiger counter”). In: Scientists-Inventors of Ivano-Frankivsk National Medical University – in the Service of Human Health (pp 24-35). Ivano-Frankivsk. (in Ukrainian)

Ковальчук Л.Є. Використання трансгенних рослин Arabidopsis thaliana як маркерів забруднення довкілля радіонуклідами («Біологічний лічильник Гейгера»). Вчені-винахідники Івано-Франківського національного медичного університету – на службі здоров'я людини. Івано-Франківськ, 2018. С. 24–35.

Kozeko, L., Talalaiev, O., Neimash, V., & Povarchuk, V. (2015). A protective role of HSP90 chaperone in gamma-irradiated Arabidopsis thaliana seeds. Life Sciences in Space Research, 6, 51-58. https://doi.org/10.1016/j.lssr.2015.07.002

Lee, S., Hung, R., Yin, G., Klich, M. A., Grimm, C., & Bennett, J.W. (2016). Arabidopsis thaliana as Bioindicator of Fungal VOCs in Indoor Air. Mycobiology, 44(3), 162-170. https://doi.org/10.5941/myco.2016.44.3.162

Maksymiec, W., & Krupa, Z. (2006). The effects of short-term exposition to Cd, excess Cu ions and jasmonate on oxidative stress appearing in Arabidopsis thaliana. Environmental and Experimental Botany, 57, 187-194. https://doi.org/10.1016/j.envexpbot.2005.05.006

Maksymiec, W., Wianowska, D., Dawidowicz, A.L., Radkiewicz, S., Mardarowicz, M., & Krupa, Z. (2005). The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. Journal of Plant Physiology, 162(12), 1338-1346. https://doi.org/10.1016/j.jplph.2005.01.013

Maksymiec, W., Wianowska, D., Dawidowicz, A.L., Radkiewicz, S., Mardarowicz, M., & Krupa, Z. (2005). The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J. Plant Physiol., 162, 1338–1346.

Matheson, A. C., & Parsons, P. A. (1973). The genetics of resistance to long-term exposure to CO2 in Drosophila melanogaster; an environmental stress leading to anoxia. Theor. Appl. Genet., 43(6), 261-268. https://doi.org/10.1007/bf00277786

Meyer, A.J., Brach, T., Marty, L., Kreye, S., Rouhier, N., Jacquot, J.P., & Hell, R. (2007). Redox-sensitive GFP in Arabidopsis thaliana is a quantitative biosensor for the redox potential of the cellular glutathione redox buffer. Plant Journal, 52(5), 973-986. https://doi.org/10.1111/j.1365-313x.2007.03280.x

Morkunas, I., Woźniak, A., Mai, V. Ch., Rucińska-Sobkowiak, R., & Jeandet. The Role of Heavy Metals in Plant Response to Biotic Stress. Molecules, 23(9), 2320 -2335. https://doi.org/10.3390%2Fmolecules23092320

Mosleh Arany, A. (2006). Ecology of Arabidopsis thaliana: local adaptation and interaction with herbivores. [Doctoral Thesis, Leiden University]. URL: https://hdl.handle.net/1887/3771.

Orel, N., & Kovalchuk, L. (2003). Cloning of sir2, rpd3 gene constructs and obtaining transgenic lines of Arabidopsis thaliana for testing chemical mutagens. Visnyk Lviv. Un-tu. Biological Series, (34), 128-134. (in Ukrainian)

Орел Н., Ковальчук Л. Клонування конструкцій генів sir2, rpd3 та отримання трансгенних ліній Arabidopsis thaliana для тестування хімічних мутагенів. Вісник Львів. ун-ту. Серія біологічна. 2003. Вип. 34, С. 128-134.

Panchuk, I.I., Volkov, R.A., & Schöffl, F. (2002). Heat stress- and heat shock transcription factor-dependent expression and activity of ascorbate peroxidase in Arabidopsis. Plant physiology, 129(2), 838-853. https://doi.org/10.1104/pp.001362

Puchta, H., Swoboda, P., & Hohn, B. (1995). Induction of homologous DNA recombination in whole plants. Plant J., 7(2), 203-210. http://surl.li/ojhsq

Rudenko, S.S., & Morozova, T.V., (2018) Thigmomorphogenesis of Arabidopsis thaliana (L.) Heynh. and its indicative value. Science and Education a New Dimension. Natural and Technical Sciences, VI(22), 13-17. https://doi.org/10.31174/SEND-NT2018-186VI22-03. (in Ukrainian)

Руденко С.С., Морозова Т.В. Тигмоморфогенез Arabidopsis thaliana (L.) Heynh. та його індикаційне значення. Science and Education a New Dimension. Natural and Technical Sciences. 2018. Вип.VI, № 22. C. 13-17. https://doi.org/10.31174/SEND-NT2018-186VI22-03

Schmöger, M.E, Oven, M., & Grill, E. (2000). Detoxification of arsenic by phytochelatins in plants. Plant Physiology, 122(3), 793-801. https://doi.org/10.1104%2Fpp.122.3.793

Suzuki, N., Koizumi, N., & Sano, H. (2002). Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ., 24(11), 1177-1188. https://doi.org/10.1046/j.1365-3040.2001.00773.x

Swoboda, P., Gal, S., Hohn, B., & Puchta, H. (1994). Intrachromosomal homologous recombination in whole plants. EMBO J., 13(2), 484-489. https://doi.org/10.1002%2Fj.1460-2075.1994.tb06283.x

Takatani, N., Ito, T., Kiba, T., Mori, M., Miyamoto, T., Maeda, S., & Omata, T. (2014). Effects of high CO2 on growth and metabolism of Arabidopsis seedlings during growth with a constantly limited supply of nitrogen. Plant Cell Physiol., 55(2), 281-292. https://doi.org/10.1093%2Fpcp%2Fpct186

Taylor, M. A., Martha, D. C., Sellamuthu, R., Braun, P., Migneault, A., Browning, A., Perry, E., & Schmitt, J. (2017). Interacting effects of genetic variation for seed dormancy and flowering time on phenology, life history, and fitness of experimental Arabidopsis thaliana populations over multiple generations in the field. New Phytologist, 216(1), 291-302. https://doi.org/10.1111/nph.14712

Tovar-Sánchez, E., Suarez-Rodríguez, R., Ramírez-Trujillo, A., Valencia-Cuevas, L., Hernández-Plata, I., & Mussali-Galante, P. (2019). The Use of Biosensors for Biomonitoring Environmental Metal Pollution. IntechOpen. https://doi.org/10.5772/intechopen.84309

Van der Auwera, G., Baute, J., Bauwens, M., Peck, I., Piette, D., Pycke, M., Asselman, P., & Depicker A. (2008). Development and application of novel constructs to score C:G-to-T:A transitions and homologous recombination in Arabidopsis. Plant Physiol., 146(1), 22-31. https://doi.org/10.1104/pp.107.105213

Van der Kooij, T. A. W., & de Kok, L. J. (1996). Impact of Elevated CO2 on Growth and Development of Arabidopsis thaliana L. Phyton; Annales Rei Botanicae, 36(2), 173-184. http://surl.li/ojhvd

Volkov, R. A., Panchuk, I. I., Mullineaux, P. M., & Schöffl F. (2006). Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant molecular biology, 61(4-5), 733-746. https://doi.org/10.1007/s11103-006-0045-4

Woodward, A.W., & Bartel, B. (2018). Biology in Bloom: A Primer on the Arabidopsis thaliana Model System. Genetics, 208(4), 1337-1349. https://doi.org/10.1534/genetics.118.300755.

Yadav, K. (2010). Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. South African Journal of Botany, 76(2), 167-179. https://doi.org/10.1016/j.sajb.2009.10.007

Zhang, L., Zhang, F., Melotto, M., Yao, J., & He, S.Y. (2017). Jasmonate signaling and manipulation by pathogens and insects. Journal of Experimental Botany, 68(6), 1371-1385. https://doi.org/10.1093/jxb/erw478

Züst, T., Heichinger, C., Grossniklaus, U., Harrington, R., Kliebenstein, D. J., & Turnbull, L. A. (2012). Natural Enemies Drive Geographic Variation in Plant Defenses. Science, 338(6103), 116-119. https://doi.org/10.1126/science.1226397

Published

2024-01-19

How to Cite

Morozova Т. (2024). ARABIDOPSIS THALIANA (L.) HEYNH. AS A MODEL OBJECT OF ENVIRONMENTAL RESEARCH. Biota. Human. Technology, (3), 83–93. https://doi.org/10.58407/bht.3.23.6

Issue

Section

ENVIRONMENTAL POLLUTION STRESSES AND ORGANISMS' RESPONSE