INTENSITY OF LIPID PEROXIDATION PROCESSES IN CURB TISSUES UNDER THE INFLUENCE OF MYCOTOXIN T2

Authors

DOI:

https://doi.org/10.58407/bht.3.25.10

Keywords:

common carp, T-2 toxin, lipid peroxidation, antioxidant enzymes, malondialdehyde, diene conjugates, oxidative stress

Abstract

Purpose of the work. The study aimed to investigate the intensity of lipid peroxidation (LPO) processes in common carp (Carassius carassius) tissues under the influence of T-2 mycotoxin, one of the most toxic trichothecenes frequently found in fish feed.

Methodology. The 14-day experiment was conducted on two-year-old common carp weighing 200–300 g. Fish were divided into two groups: control and experimental, maintained under standard aquaculture conditions. The experimental group was exposed to T2 toxin at a concentration of 2.0 μg/L. At the end of the trial, liver, gill, brain, and skeletal muscle samples were collected for biochemical analysis. Lipid peroxidation was assessed by measuring malondialdehyde (MDA) and diene conjugates (DC), while antioxidant defense was evaluated through superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GP) activities. Data were processed statistically using one-way ANOVA and Student’s t-test.

Scientific novelty. Exposure to T-2 toxin induced a significant activation of antioxidant enzymes, particularly in the liver, where SOD, CAT, and GP activities increased 1.5–1.7-fold (p<0.05). In gills, a notable increase in SOD and GP activity was observed, while in brain and skeletal muscles only a tendency to growth without statistical significance was recorded. Additionally, T-2 toxin exposure led to an accumulation of lipid peroxidation products: MDA levels rose by 70 % in liver and 47 % in gills, while DC increased by 45 % and 33 % respectively (p<0.05). These findings highlight the development of oxidative stress and organ-specific responses to toxin exposure.

Conclusions. T-2 toxin at 2.0 μg/L triggers enhanced lipid peroxidation and antioxidant defense activity in common carp, with the most pronounced alterations in the liver and gills. The organ-specific character of these changes underlines the sensitivity of biochemical markers of oxidative stress as indicators of toxic load in aquatic organisms. The results have practical importance for ecotoxicology and aquaculture, providing a basis for environmental monitoring, feed safety assessment, and preventive measures against mycotoxicosis in freshwater ecosystems.

Downloads

Download data is not yet available.

References

Bashorun, A., Hassan, Z. U., Al-Yafei, M. A., and Jaoua, S. (2023). Fungal contamination and mycotoxins in aquafeed and tissues of aquaculture fishes and their biological control. Aquaculture, 576, 01–08. https://doi.org/10.1016/j.aquaculture.2023.739892

Błajet-Kosicka, S., Turek, J. T., Szyper-Matiaszek, J. A., Szymański, R. W., Szołtysik, A., Mikołajczak, A., Kowalski, P., & Szymański, P. R. (2024). T-2 Toxin—The Most Toxic Trichothecene Mycotoxin: Metabolism, Toxicity, and Decontamination Strategies. Toxins, 16(1). https://doi.org/10.3390/toxins16010041

Dotsenko, O. I., Dotsenko, V. A., & Mishchenko, A. M. (2010). Aktyvnist superoksyddysmutazy i kata¬lazy v erytrotsytakh i deiakykh tkanynakh myshei v umovakh nyzkochastotnoi vibratsii. Fizyka zhyvoho, 18(1), 107–113. (in Ukrainian).

Доценко О. І., Доценко В. А., Міщенко А. М. Активність супероксиддисмутази і каталази в еритроцитах і деяких тканинах мишей в умовах низькочастотної вібрації. Фізика живого. 2010. Т. 18, № 1. С. 107–113.

Fornari, D.C., Peixoto, S., Ksepka, S.P., Bullard, S.A., Rossi, W., Nuzback, D.E., & Davis, D.A. (2023). Effects of dietary mycotoxins and mycotoxin adsorbent additives on production performance, hermatological parameters, and liver histology in juvenile Nile tilapia (Oreochromis niloticus). Frontiers in Animal Science, 4, 1281722. https://doi.org/10.3389/fanim.2023.1281722

Gruber-Dorninger, C., Müller, A., & Rosen, R. (2025). Multi-Mycotoxin Contamination of Aquaculture Feed: A Global Survey. Toxins, 17(3), 116. https://doi.org/10.3390/toxins17030116

Holovchak, N. P., Tarnovska, A. V., Kotsiumbas, H. I., & Sanahuskyi, D. I. (2012). Protsesy perekysnoho okysnennia lipidiv u zhyvykh orhanizmakh: monohrafiia [Lipid peroxidation processes in living organisms: monograph]. Lviv: LNU imeni Ivana Franka, 252 p. (in Ukrainian)

Головчак Н. П., Тарновська А. В., Коцюмбас Г. І., Санагуський Д. І. Процеси перекисного окиснення ліпідів у живих організмах: монографія. Львів: ЛНУ імені Івана Франка, 2012. 252 с.

Khomenchuk, V. O., Rabcheniuk, O. O., Stanislavchuk, A. V., & Kurant, V. Z. (2018). Free radical lipid peroxidation in fish tissues under the action of ferrum (III). In Modern problems of theoretical and practical ichthyology: Proceedings of the 11th Ichthyological Scientific and Practical Conference (pp. 82–85). Lviv. (In Ukrainian)

Хоменчук В. О., Рабченюк О. О., Станіславчук А. В., Курант В. З. Вільнорадикальне перекисне окиснення ліпідів у тканинах риб за дії феруму (ІІІ). Сучасні проблеми теоретичної та практичної іхтіології: матеріали XI іхтіологічної науково-практичної конференції (Львів, 18–20 вересня 2018 р.). Львів, 2018. С. 82–85.

Koletsi, P., Schrama, J.W., Graat, E.A.M., Wiegertjes, G.F., Lyons, P., & Pietsch, C. (2021). The Occurrence of Mycotoxins in Raw Materials and Fish Feeds in Europe and the Potential Effects of Deoxynivalenol (DON) on the Health and Growth of Farmed Fish Species—A Review. Toxins, 13(6), 403. https://doi.org/10.3390/toxins13060403

Kostiuk, V. A., Potapovych, A. I., & Kovalova, Zh. V. (1990). Prostyi i chutlyvyi metod vyznachennia aktyvnosti superoksyddysmutazy, osnovanyi na reaktsii okysnennia kvertsetynu. Pytannia medychnoi khimii, (2), 88–91. (in Ukrainian).

Костюк В. А., Потапович А. І., Ковальова Ж. В. Простий і чутливий метод визначення активності супероксиддисмутази, оснований на реакції окиснення кверцетину. Питання медичної хімії. 1990. № 2. С. 88–91.

Kovalsky, P., Kos, G., Nährer, K., Schwab, C., Jenkins, T., Schatzmayr, G., Sulyok, M., Krska, R. (2016). Co-occurrence of regulated, masked and emerging mycotoxins and secondary metabolites in finished feed and maize-an extensive survey. Toxins, 8, 363.

Levadna, O. V., Donchenko, H. V., Valutsyna, V. M., et al. (1998). Spivvidnoshennia mizh velychynamy aktyvnosti fermentiv antyoksydantnoi systemy v riznykh tkanynakh intaktnykh shchuriv. Ukrainskyi biokhimichnyi zhurnal, 70(6), 53–58. (in Ukrainian)

Левадна О. В., Донченко Г. В., Валуцина В. М. та ін. Співвідношення між величинами активності ферментів антиоксидантної системи в різних тканинах інтактних щурів. Український біохімічний журнал. 1998. Т. 70, № 6. С. 53–58.

Lowry, O., Rosebrough, N., Farr, A., & Randall, R. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. https://www.jbc.org/article/S0021-9258(19)52451-6/pdf

Matiushko, S., & Mekhed, O. (2024). Changes in the content of adenylates in carp tissues under the action of mycotoxin T2. Biota. Human. Technology, (3), 78-83. https://doi.org/110.58407/bht.3.24.5 (In Ukrainian).

Матюшко С., Мехед О. Зміни вмісту аденілатів в тканинах коропа за дії мікотоксину Т2. Biota. Human. Technology. 2024. № 3. С. 78-83. https://doi.org/110.58407/bht.3.24.5

Mekhed, O. B. (2024). Effect of T-2 mycotoxin on certain biochemical indicators of hydrobionts. Molluscs: results, problems and perspectives of research. Zhytomyr: Euro-Volyn, 19–21. (in Ukrainian). https://tinyurl.com/4umjzxt5

Мехед О. Б. Вплив мікотоксину Т2 на деякі біохімічні показники гідробіонтів. Молюски: результати, проблеми і перспективи досліджень. Житомир: Євро-Волинь, 2024. С. 19-21. https://tinyurl.com/4umjzxt5

Osoba, I. A. (2013). Biological role of lipid peroxidation in ensuring the functioning of fish organisms. Fisheries Science of Ukraine, (1), 87–96. Retrieved from http://www.fishukr.org.ua (In Ukrainian).

Особа І. А. Біологічна роль перекисного окиснення ліпідів у забезпеченні функціонування організму риб. Рибогосподарська наука України. 2013. № 1. С. 87–96. URL: http://www.fishukr.org.ua

Osoba, I. A., & Hrytsyniak, I. I. (2010). Activity of the non-enzymatic link of the antioxidant defense system in the liver of one-year-old scaly and mirror carp of Nesvytskyi zonal type. Fisheries Science of Ukraine, (3), 62–65. Retrieved from http://www.fishukr.org.ua (In Ukrainian).

Особа І. А., Грициняк І. І. Активність неферментативної ланки системи антиоксидантного захисту у печінці однорічок лускатих та рамчастих коропів несвицького зонального типу. Рибогосподарська наука України. 2010. № 3. С. 62–65. URL: http://www.fishukr.org.ua

Ou, P., & Wolf, S. P. (1994). Erythrocyte catalase inactivation (H2O2 production) by ascorbic acid and glucose in presence of aminotriazole: role of transition metals and relevance to diabetes. Biochemical Journal, 303, 935–940.

Phudkliang, J., Soonthornchai, W., Maele, L.V., Xu, H., Qi, Z., Lee, P.-T., Chantiratikul, A., & Wangkahart, E. (2025). Studies on the use of mycotoxin binders as an effective strategy to mitigate mycotoxin contamination in aquafeed: A case study in Nile tilapia (Oreochromis niloticus). Aquaculture Reports, 43, 102984. https://doi.org/10.1016/j.aqrep.2025.102984

Polotnianko, L., & Mekhed, O. (2023). Accumulation of mycotoxins in the muscles of scaly carp (Cyprinus carpio Linnaeus, 1758) when fed T-2 toxin-contaminated feed. Natural resources of the border areas in the conditions of climate change. Chernihiv: Desna-Polihraf, 105–106. (in Ukrainian).

Полотнянко Л., Мехед О. Накопичення мікотоксинів у м'язах коропа лускатого (Cyprinus carpio Linnaeus, 1758) при згодовуванні корму, контамінованого T2-токсином. Природні ресурси прикордонних територій в умовах зміни клімату. Чернігів : Десна-Поліграф. 2023. С. 105-106

Polotnianko, L., & Mekhed, O. (2024). Changesin the morphological indicators of carp under the action of mycotoxin T2. Biota. Human. Technology, (3), 69-76. https://doi.org/10.58407/bht.3.24.4

Symonova, N. A., Mekhed, O. B., Kupchyk, O. Y., & Tretyak, O. P. (2018). Toxicants in the degradation of lipids in the organism of scaly carp. Ukrainian Journal of Ecology, 8(4), 6-10.

World Medical Association. (‎2013)‎. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. JAMA, 310(20), 2191-2194. https://doi.org/10.1001/jama.2013.281053

Zhang, L., Wang, J., Liu, R., Han, C., Li, X., Ding, J., Zhang, T., & Liu, J. (2019). T-2 Toxin: A Comprehensive Review on Its Occurrence, Toxicity, and Detoxification. Toxins, 11(3). https://doi.org/10.3390/toxins11030147

Zhu, J., Wang, L., Fang, H., Zheng, X., Liu, J., Huang, Z., Wu, W., Yan, Q., Li, Y., & Wang, Y. (2017). Hepatotoxicity of T-2 toxin in HepG2 cells involves inhibition of cell proliferation, apoptosis, and mitochondrial injury. Food and Chemical Toxicology, 108, 434–442. https://doi.org/10.1016/j.fct.2017.09.006

Published

2025-12-16

How to Cite

Symonova Н. (2025). INTENSITY OF LIPID PEROXIDATION PROCESSES IN CURB TISSUES UNDER THE INFLUENCE OF MYCOTOXIN T2. Biota. Human. Technology, (3), 103–110. https://doi.org/10.58407/bht.3.25.10

Issue

Section

ENVIRONMENTAL POLLUTION STRESSES AND ORGANISMS' RESPONSE