METAL NANOPARTICLES AND ANTIBIOTICS: VALORIZATION OF SYNERGISTIC INTERACTION AND APPLICATION PROSPECTS

Authors

DOI:

https://doi.org/10.58407/bht.2.24.3

Keywords:

metal nanoparticles, antibiotics, antibacterial action, antibiotic resistance, synergistic interaction

Abstract

Antibiotic resistance has become a global problem arising from the evolutionary adaptation mechanisms of microorganisms. As a result, there is a constant need to find new solutions, such as developing new drugs or establishing synergistic interactions.

Purpose of the work: critical analysis of research paper in the direction of metal nanosystems antimicrobial actions, testing their activity in combinations with different antibiotics, and as a result, synergistic action assessment.

Methodology. Present paper reviews the antibacterial mechanism of action of various metals and their oxides nanoparticles, their biomedical applications, toxity potential and methods of NP synthesis. It analyzes and systematizes modern classes of antibiotics, including both commonly used and special groups obtained by genetic engineering. The structural features of the antibiotic molecules with functional atom groups that ensure their antibacterial mechanisms are also reviewed. Innovative approaches to the synthesis of «antibiotic-metal NP» systems are analyzed, and four main methods of obtaining such complexes are highlighted.

Scientific novelty. Hypotheses explaining the mechanism of synergistic interaction between NPs and antibiotics of different classes have been analysed. It is shown that the synergistic effect arises from the increased permeability of cell walls and membranes, the enhanced local concentration of metal ions in the cytoplasm, and the conjugation of «antibiotic–metal NP» complexes with bacterial nucleic acids.

Conclusions.The obtained results hold promise for clinical practice in developing new therapeutic methods and combating antibiotic resistance. Conclusions regarding the main requirements for creating complex «antibiotic–metal NP» pharmaceuticals are formulated. It is expected that the established synergism will lead to a reduction in effective doses, which will in turn reduce toxicity and undesirable side effects of the innovative complex.

Downloads

Download data is not yet available.

References

Ambaye, T. G., Vaccari, M., & van Hullebusch, E. D. (2021). Photocatalytic nanomaterials for bacterial disinfection. In: Inamuddin, M.I. Ahamed, E. Lichtfouse (Eds) Water Pollution and Remediation: Photocatalysis. Environmental Chemistry for a Sustainable World, 57. Springer. https://doi.org/10.1007/978-3-030-54723-3_7

Agreles, M., Cavalcanti, I., & Cavalcanti, I. (2022). Synergism between metallic nanoparticles and antibiotics. Appl. Microbiol. Biotechnol. 106, 3973–3984. https://doi.org/10.1007/s00253-022-12001-1

Bambeke, F., Glupczynski, Y., Mingeot-Leclercq M-P., & Tulkens, P. (2010). Chapter 130: Mechanisms of action. In G. Cohan (Ed), Infectious Diseases. (3d Ed. pp.1288–1307). Elsevier/Mosby. https://www.farm.ucl.ac.be/Full-texts-FARM/Vanbambeke-2010-2.pdf

Bishoyi, A. K., Sahoo, C. R., & Padhy, R. N. (2022). Recent progression of cyanobacteria and their pharmaceutical utility: an update. Journal of Biomolecular Structure and Dynamics, 41(9), 4219–4252.

Campbell, E. A., Korzheva, N., Mustaev, A., Murakami, K., Nair, S., Goldfarb, A., & Darst, S. A. (2001). Structural mechanism for rifampicin inhibition of bacterial RNA polymerase". Cell. 104(6), 901–912. doi:10.1016/S0092-8674(01)00286-0

Chlumsky, O., Purkrtova, S., Michova, H., Sykorova, H., Slepicka, P., Fajstavr, D., Ulbrich, P., Viktorova, J., & Demnerova, K. (2021). Antimicrobial Properties of Palladium and Platinum Nanoparticles: A New Tool for Combating Food-Borne Pathogens. Int. J. Mol. Sci., 22(15), 7892. https://www.mdpi.com/1422-0067/22/15/7892

Deng, H., McShan, D., Zhang, Yi., Sinha, S.,S., Arslan, Z., Ray, P. C., & Yu, H. (2016). Mechanistic study of the synergistic antibacterial activity of combined silver nanoparticles and common antibiotics. Environmental Science & Technology, 50(16), 8840–8848 https://doi.org/10.1021/acs.est.6b00998

Duan, S., & Wang, R. (2013). Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog. Nat. Sci. Mater. Int., 23, 113–126. https://doi.org/10.1016/j.pnsc.2013.02.001

Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Maaza, M., Ayeshamariam, A., & Kennedy, L. J. (2016). Green synthesis of NiO nanoparticles using Moringa oleifera extract and their biomedical applications: Cytotoxicity effect of nanoparticles against HT-29 cancer cells. Journal of Photochemistry and Photobiology. B: Biology, 164, 352–360. https://doi.org/10.1016/j.jphotobiol.2016.10.003

Ezhilarasi, A. A., Vijaya, J. J., Kaviyarasu, K., Kennedy, L. J., Ramalingam, R. J., & Al-Lohedan, H. A. (2018). Green synthesis of NiO nanoparticles using Aegle marmelos leaf extract for the evaluation of in-vitro cytotoxicity, antibacterial and photocatalytic properties. Journal of Photochemistry and Photobiology B: Biology, 180, 39–50, https://doi.org/10.1016/j.jphotobiol.2018.01.023

Falagas, M. E., Kasiakou, S. K., & Saravolatz, L. D. (2005). Colistin: The revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clinical Infectious Diseases, 40(9), 1333–1341. https://doi.org/10.1086/429323

Fanoro, O. T., & Oluwafemi, O. S. (2020). Bactericidal Antibacterial Mechanism of Plant Synthesized Silver, Gold and Bimetallic Nanoparticles. Pharmaceutics, 12, 1044. https://doi.org/10.3390/pharmaceutics12111044

Fayaz, A.M., Balaji, K., Girilal, M., Yadav, R., Kalaichelvan, P.T., & Venketesan, R. (2010). Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med., 6, 103–109. https://doi.org/10.1016/j.nano.2009.04.006

Haghighi, F., Mohammadi, S., Mohammadi, P., & Hosseinkhani, S. (2013). Antifungal activity of TiO2 nanoparticles and EDTA on Candida albicans biofilms. Infect. Epidemiol. Med., 1, 33–38. https://www.semanticscholar.org/paper/Antifungal-Activity-of-TiO-2-nanoparticles-and-EDTA-Haghighi-Mohammadi/d816127a0b7d75797b3497f3009f690985932dbc?utm_source=direct_link

Hasoon, B. A., Jawad, K. H., Mohammed, I. S., Hussein, N. N., Al-azawi, K. F., & Jabir, M. S. (2024). Silver nanoparticles conjugated amoxicillin: A promising nano-suspension for overcoming multidrug resistance bacteria and preservation of endotracheal tube. Inorganic Chemistry Communications, 112456, https://doi.org/10.1016/j.inoche.2024.112456.

Heide, L. (2009). Chapter 18. Aminocoumarins: Mutasynthesis, Chemoenzymatic Synthesis, and Metabolic Engineering. Methods in Enzymology, 459. 437–455. https://doi.org/10.1016/S0076-6879(09)04618-7

Huang, Z., Zheng, X., Yan, D., Yin, G., Liao, X., Kang, Y., Yao, Y., Huang, D., & Hao, B. (2008). Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir, 24(8), 4140–4144. https://pubs.acs.org/doi/10.1021/la7035949

Huh, A. J., & Kwon, Y. J. (2011). “Nanoantibiotics”: A new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. J. Control. Release, 156(2), 128–145. https://doi.org/10.1016/j.jconrel.2011.07.002

Jin, T., & He, Y. (2011). Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. J. Nanoparticle Res., 13, 6877–6885. https://link.springer.com/article/10.1007/s11051-011-0595-5

Kaur, P., Nene, A.G., Sharma, D., Somani, P. R., & Tuli, H. S. (2019). Synergistic effect of copper nanoparticles and antibiotics to enhance antibacterial potential. Bio-Mater. Technol., 1, 33–47.

Maleki Dizaj, S., Lotfipour, F., Barzegar-Jalali, M., Hossein Zarrintan, M., & Adibkia K. (2014). Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng C, 44, 278–284. https://doi.org/10.1016/j.msec.2014.08.031

Mast, Y., & Wohlleben, W. (2014). Streptogramins – Two are better than one. International Journal of Medical Microbiology, 304(1), 44–50. https://doi.org/10.1016/j.ijmm.2013.08.008

Meena, P., & Kishore, N. (2021). Thermodynamic and mechanistic analytical effect of albumin coated gold nanosystems for antibiotic drugs binding and interaction with deoxyribonucleic acid. J. Mol. Liq., 339, 116718. https://doi.org/10.1016/j.molliq.2021.116718

Mukherji, S., Bharti, S., Shukla, G., & Mukherji, S. (2019). Synthesis and characterization of size- and shape-controlled silver nanoparticles. Physical Sciences Reviews, 4(1), 20170082. https://doi.org/10.1515/psr-2017-0082

Nishanthi, R., Malathi, S., John Paul, S., & Palani P. (2019). Green synthesis and characterization of bioinspired silver, gold and platinum nanoparticles and evaluation of their synergistic antibacterial activity after combining with different classes of antibiotics, Mater Sci Eng C, 96, 693–707, https://doi.org/10.1016/j.msec.2018.11.050

Overview of antibiotic therapy (2024). AMBOSS Database, Last Updated 14.05.2022. https://www.amboss.com/us/knowledge/overview-of-antibiotic-therapy

Pal, S., Tak, Y. K., & Song, J. M. (2007). Dose the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol., 27(6), 1712–1720. https://journals.asm.org/doi/10.1128/aem.02218-06

Panáček, A., Kvítek, L., Smékalová, M., Večeřová, R., Kolář, M., Röderová, M., Dyčka, F., Šebela, M., Prucek, R., & Tomanec, O. (2018). Bacterial resistance to silver nanoparticles and how to overcome it. Nat. Nanotechnol., 13, 65–71. https://doi.org/10.1038/s41565-017-0013-y

Patel, S., & Beteck, R. (2021). Metronidazole-conjugates: A comprehensive review of recent developments towards synthesis and medicinal perspective. European Journal of Medicinal Chemistry, https://www.sciencedirect.com/topics/pharmacology-toxicology-and-pharmaceutical-science/nitroimidazole#chapters-articles

Patra, J. K., & Baek, K. H. (2015). Novel green synthesis of gold nanoparticles using Citrullus lanatus rind and investigation of proteasome inhibitory activity, antibacterial, and antioxidant potential. Int. J. Nanomed., 10, 7253–7264. https://www.semanticscholar.org/paper/Novel-green-synthesis-of-gold-nanoparticles-using-Patra-Baek/3ae247d15e44fd8557fe74243fa474363b823577

Pillai, S.M., & Latha, P. S. (2016) Designing of some novel metallo antibiotics tuning biochemical behavior towards therapeutics: Synthesis, characterisation and pharmacological studies of metal complexes of cefixime. J. Saudi Chem. Soc., 20, S60–S66. https://doi.org/10.1016/j.jscs.2012.09.004

Salahuddin, N., Gaber, M., Elneanaey, S., Snowdon, M. R., & Abdelwahab, M. A. (2021). Co-delivery of norfloxacin and tenoxicam in Ag-TiO2/poly(lactic acid) nanohybrid. Int. J. Biol. Macromol., 180, 771–781. https://doi.org/10.1016/j.ijbiomac.2021.03.033

Salata, O. (2004). Applications of nanoparticles in biology and medicine. J Nanobiotechnol, 2, 3. https://doi.org/10.1186/1477-3155-2-3

Salas-Orozco, M., Niño-Martínez, N., Martínez-Castañón, G.-A., Méndez, F.T., Jasso, M.E.C., & Ruiz, F. (2019). Mechanisms of Resistance to Silver Nanoparticles in Endodontic Bacteria: A Literature Review. J. Nanomater., 7630316, 1–11 https://www.hindawi.com/journals/jnm/2019/7630316/

Shabatina, T. I., Vernaya, O. I., & Melnikov, M.Y. (2023). Hybrid Nanosystems of Antibiotics with Metal Nanoparticles – Novel Antibacterial Agents. Molecules, 28, 1603. https://doi.org/10.3390/molecules28041603

Sondi, I., & Salopek-Sondi, B. (2004). Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci., 275, 177–182. https://doi.org/10.1016/j.jcis.2004.02.012

Spížek, J., & Řezanka, T. (2017). Lincosamides: Chemical structure, biosynthesis, mechanism of action, resistance, and applications. Biochemical Pharmacology, 133, 20–28. https://www.sciencedirect.com/science/article/abs/pii/S0006295216304622?via%3Dihub

Staszek, M., Siegel, J., Kolářová, K., Rimpelová, S., & Švorčík, V. (2014). Formation and antibacterial action of Pt and Pd nanoparticles sputtered into liquid. Micro & Nano Letters, 9(11), 778-781. https://ietresearch.onlinelibrary.wiley.com/doi/pdfdirect/10.1049/mnl.2014.0345

Stratakis, E., Barberoglou, M., Fotakis, C., Viau, G., Garcia, С., & Shafeev, G. (2009). Generation of Al nanoparticles via ablation of bulk Al in liquids with short laser pulses. Opt. Express, 17, 12650–12659. https://opg.optica.org/oe/fulltext.cfm?uri=oe-17-15-12650&id=183579

Usman, M., Zowalaty, M.,. Shameli, K.,. Zainuddin, N., Salama M., & Ibrahim, N. (2013). Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int. J. Nanomedicine, 8, 4467–4479. https://pubmed.ncbi.nlm.nih.gov/24293998/

Published

2024-09-18

How to Cite

Khrokalo Л. ., & Sulyma Д. . (2024). METAL NANOPARTICLES AND ANTIBIOTICS: VALORIZATION OF SYNERGISTIC INTERACTION AND APPLICATION PROSPECTS. Biota. Human. Technology, (2), 26–47. https://doi.org/10.58407/bht.2.24.3

Issue

Section

MICROBIOTA